Difference between revisions of "2006 AIME II Problems/Problem 6"

(Problem)
 
(6 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
[[Square]] <math> ABCD </math> has sides of length 1. Points <math> E </math> and <math> F </math> are on <math> \overline{BC} </math> and <math> \overline{CD}, </math> respectively, so that <math> \triangle AEF </math> is [[equilateral]]. A square with vertex <math> B </math> has sides that are [[parallel]] to those of <math> ABCD </math> and a vertex on <math> \overline{AE}. </math> The length of a side of this smaller square is <math>\frac{a-\sqrt{b}}{c}, </math> where <math> a, b, </math> and <math> c </math> are positive integers and <math> b</math> is not divisible by the square of any prime. Find <math> a+b+c. </math>
+
Square <math> ABCD </math> has sides of length 1. Points <math> E </math> and <math> F </math> are on <math> \overline{BC} </math> and <math> \overline{CD}, </math> respectively, so that <math> \triangle AEF </math> is equilateral. A square with vertex <math> B </math> has sides that are parallel to those of <math> ABCD </math> and a vertex on <math> \overline{AE}. </math> The length of a side of this smaller square is <math>\frac{a-\sqrt{b}}{c}, </math> where <math> a, b, </math> and <math> c </math> are positive integers and <math> b</math> is not divisible by the square of any prime. Find <math> a+b+c. </math>
  
 
== Solution 1 ==
 
== Solution 1 ==
Line 34: Line 34:
 
Call the vertices of the new square A', B', C', and D', in relation to the vertices of <math>ABCD</math>, and define <math>s</math> to be one of the sides of that square. Since the sides are [[parallel]], by [[corresponding angles]] and AA~ we know that triangles <math>AA'D'</math> and <math>D'C'E</math> are similar. Thus, the sides are proportional: <math>\frac{AA'}{A'D'} = \frac{D'C'}{C'E} \Longrightarrow \frac{1 - s}{s} = \frac{s}{1 - s - CE}</math>. Simplifying, we get that <math>s^2 = (1 - s)(1 - s - CE)</math>.
 
Call the vertices of the new square A', B', C', and D', in relation to the vertices of <math>ABCD</math>, and define <math>s</math> to be one of the sides of that square. Since the sides are [[parallel]], by [[corresponding angles]] and AA~ we know that triangles <math>AA'D'</math> and <math>D'C'E</math> are similar. Thus, the sides are proportional: <math>\frac{AA'}{A'D'} = \frac{D'C'}{C'E} \Longrightarrow \frac{1 - s}{s} = \frac{s}{1 - s - CE}</math>. Simplifying, we get that <math>s^2 = (1 - s)(1 - s - CE)</math>.
  
<math>\angle EAF</math> is <math>60</math> degrees, so <math>\angle BAE = \frac{90 - 60}{2} = 15</math>. Thus, <math>\cos 15 = \cos (45 - 30) = \frac{\sqrt{6} + \sqrt{2}}{4} = \frac{1}{AE}</math>, so <math>AE = \frac{4}{\sqrt{6} + \sqrt{2}} \cdot \frac{\sqrt{6} - \sqrt{2}}{\sqrt{6} - \sqrt{2}} = \sqrt{6} - \sqrt{2}</math>. Since <math>\triangle AEF</math> is [[equilateral]], <math>EF = AE = \sqrt{6} - \sqrt{2}</math>. <math>\triangle CEF</math> is a <math>45-45-90 \triangle</math>, so <math>CE = \frac{AE}{\sqrt{2}} = \sqrt{3} - 1</math>. Substituting back into the equation from the beginning, we get <math>s^2 = (1 - s)(2 - \sqrt{3} - s)</math>, so <math>(3 - \sqrt{3})s = 2 - \sqrt{3}</math>. Therefore, <math>s = \frac{2 - \sqrt{3}}{3 - \sqrt{3}} \cdot \frac{3 + \sqrt{3}}{3 + \sqrt{3}} = \frac{3 - \sqrt{3}}{6}</math>, and <math>a + b + c = 3 + 3 + 6 = 12</math>.
+
<math>\angle EAF</math> is <math>60</math> degrees, so <math>\angle BAE = \frac{90 - 60}{2} = 15</math>. Thus, <math>\cos 15 = \cos (45 - 30) = \frac{\sqrt{6} + \sqrt{2}}{4} = \frac{1}{AE}</math>, so <math>AE = \frac{4}{\sqrt{6} + \sqrt{2}} \cdot \frac{\sqrt{6} - \sqrt{2}}{\sqrt{6} - \sqrt{2}} = \sqrt{6} - \sqrt{2}</math>. Since <math>\triangle AEF</math> is [[equilateral]], <math>EF = AE = \sqrt{6} - \sqrt{2}</math>. <math>\triangle CEF</math> is a <math>45-45-90 \triangle</math>, so <math>CE = \frac{AE}{\sqrt{2}} = \sqrt{3} - 1</math>. Substituting back into the equation from the beginning, we get <math>s^2 = (1 - s)(2 - \sqrt{3} - s)</math>, so <math>(3 - \sqrt{3})s = 2 - \sqrt{3}</math>. Therefore, <math>s = \frac{2 - \sqrt{3}}{3 - \sqrt{3}} \cdot \frac{3 + \sqrt{3}}{3 + \sqrt{3}} = \frac{3 - \sqrt{3}}{6}</math>, and <math>a + b + c = 3 + 3 + 6 = \boxed{12}</math>.
  
 
----
 
----
Line 59: Line 59:
  
 
Solving for s, <math>s = \frac{3 - \sqrt{3}}{6}</math>, and <math>a + b + c = 3 + 3 + 6 = 12</math>.
 
Solving for s, <math>s = \frac{3 - \sqrt{3}}{6}</math>, and <math>a + b + c = 3 + 3 + 6 = 12</math>.
 +
 +
== Solution 3 ==
 +
Suppose <math>\overline{AB} = \overline{AD} = x.</math> Note that <math>\angle EAF = 60</math> since the triangle is equilateral, and by symmetry, <math>\angle BAE = \angle DAF = 15.</math> Note that if <math>\overline{AD} = x</math> and <math>\angle BAE = 15</math>, then <math>\overline{AA'}=\frac{x}{\tan(15)}.</math> Also note that <cmath>AB = 1 = \overline{AA'} + \overline{A'B} = \frac{x}{\tan(15)} + x</cmath>
 +
Using the fact <math>\tan(15) = 2-\sqrt{3}</math>, this yields <cmath>x = \frac{1}{3+\sqrt{3}} = \frac{3-\sqrt{3}}{6} \rightarrow 3 + 3 + 6 = \boxed{12}</cmath>
  
 
==Elegant Solution==
 
==Elegant Solution==
  
 
Why not solve in terms of the side <math>x</math> only (single-variable beauty)? By similar triangles we obtain that <math>BE=\frac{x}{1-x}</math>, therefore <math>CE=\frac{1-2x}{1-x}</math>. Then <math>AE=\sqrt{2}*\frac{1-2x}{1-x}</math>. Using Pythagorean Theorem on <math>\triangle{ABE}</math> yields <math>\frac{x^2}{(1-x)^2} + 1 = 2 * \frac{(1-2x)^2}{(1-x)^2}</math>. This means <math>6x^2-6x+1=0</math>, and it's clear we take the smaller root: <math>x=\frac{3-\sqrt{3}}{6}</math>. Answer: <math>\boxed{12}</math>.
 
Why not solve in terms of the side <math>x</math> only (single-variable beauty)? By similar triangles we obtain that <math>BE=\frac{x}{1-x}</math>, therefore <math>CE=\frac{1-2x}{1-x}</math>. Then <math>AE=\sqrt{2}*\frac{1-2x}{1-x}</math>. Using Pythagorean Theorem on <math>\triangle{ABE}</math> yields <math>\frac{x^2}{(1-x)^2} + 1 = 2 * \frac{(1-2x)^2}{(1-x)^2}</math>. This means <math>6x^2-6x+1=0</math>, and it's clear we take the smaller root: <math>x=\frac{3-\sqrt{3}}{6}</math>. Answer: <math>\boxed{12}</math>.
 +
== Solution 5 (First part is similar to Solution 2) ==
 +
Since <math>AEF</math> is equilateral, <math>AE=EF</math>. Let <math>BE=x</math>. By the [[Pythagorean theorem]], <math>1+x^2=2(1-x)^2</math>. Simplifying, we get <math>x^2-4x+1=0</math>. By the quadratic formula, the roots are <math>2 \pm \sqrt{3}</math>. Since <math>x<1</math>, we discard the root with the "+", giving <math>x=2-\sqrt{3}</math>.
 +
<asy>
 +
real n;
 +
n=0.26794919243;
 +
real m;
 +
m=0.2113248654;
 +
draw((0,0)--(0,n)--(1,0)--(0,0));
 +
draw((0,m)--(m,m)--(m,0));
 +
label((0,0), "$B$",SW);
 +
label((0,n), "$E$",SW);
 +
label((0,m), "$M$",SW);
 +
label((1,0), "$A$",SW);
 +
label((m,0), "$N$",SW);
 +
label((m,m), "$K$",NE);
 +
</asy>
 +
Let the side length of the square be s. Since <math>MEK</math> is similar to <math>ABE</math>, <math>s=\frac{2-\sqrt{3}-s}{2-\sqrt{3}}</math>. Solving, we get <math>s=\frac{3-\sqrt{3}}{6}</math> and the final answer is <math>\boxed{012}</math>.
  
 
== See also ==
 
== See also ==

Latest revision as of 11:23, 8 April 2024

Problem

Square $ABCD$ has sides of length 1. Points $E$ and $F$ are on $\overline{BC}$ and $\overline{CD},$ respectively, so that $\triangle AEF$ is equilateral. A square with vertex $B$ has sides that are parallel to those of $ABCD$ and a vertex on $\overline{AE}.$ The length of a side of this smaller square is $\frac{a-\sqrt{b}}{c},$ where $a, b,$ and $c$ are positive integers and $b$ is not divisible by the square of any prime. Find $a+b+c.$

Solution 1

[asy] unitsize(32mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=3;  pair B = (0, 0), C = (1, 0), D = (1, 1), A = (0, 1); pair Ep = (2 - sqrt(3), 0), F = (1, sqrt(3) - 1); pair Ap = (0, (3 - sqrt(3))/6); pair Cp = ((3 - sqrt(3))/6, 0); pair Dp = ((3 - sqrt(3))/6, (3 - sqrt(3))/6); pair[] dots = {A, B, C, D, Ep, F, Ap, Cp, Dp};  draw(A--B--C--D--cycle); draw(A--F--Ep--cycle); draw(Ap--B--Cp--Dp--cycle); dot(dots);  label("$A$", A, NW); label("$B$", B, SW); label("$C$", C, SE); label("$D$", D, NE); label("$E$", Ep, SE); label("$F$", F, E); label("$A'$", Ap, W); label("$C'$", Cp, SW); label("$D'$", Dp, E); label("$s$", Ap--B, W); label("$1$", A--D, N); [/asy] Call the vertices of the new square A', B', C', and D', in relation to the vertices of $ABCD$, and define $s$ to be one of the sides of that square. Since the sides are parallel, by corresponding angles and AA~ we know that triangles $AA'D'$ and $D'C'E$ are similar. Thus, the sides are proportional: $\frac{AA'}{A'D'} = \frac{D'C'}{C'E} \Longrightarrow \frac{1 - s}{s} = \frac{s}{1 - s - CE}$. Simplifying, we get that $s^2 = (1 - s)(1 - s - CE)$.

$\angle EAF$ is $60$ degrees, so $\angle BAE = \frac{90 - 60}{2} = 15$. Thus, $\cos 15 = \cos (45 - 30) = \frac{\sqrt{6} + \sqrt{2}}{4} = \frac{1}{AE}$, so $AE = \frac{4}{\sqrt{6} + \sqrt{2}} \cdot \frac{\sqrt{6} - \sqrt{2}}{\sqrt{6} - \sqrt{2}} = \sqrt{6} - \sqrt{2}$. Since $\triangle AEF$ is equilateral, $EF = AE = \sqrt{6} - \sqrt{2}$. $\triangle CEF$ is a $45-45-90 \triangle$, so $CE = \frac{AE}{\sqrt{2}} = \sqrt{3} - 1$. Substituting back into the equation from the beginning, we get $s^2 = (1 - s)(2 - \sqrt{3} - s)$, so $(3 - \sqrt{3})s = 2 - \sqrt{3}$. Therefore, $s = \frac{2 - \sqrt{3}}{3 - \sqrt{3}} \cdot \frac{3 + \sqrt{3}}{3 + \sqrt{3}} = \frac{3 - \sqrt{3}}{6}$, and $a + b + c = 3 + 3 + 6 = \boxed{12}$.


Here's an alternative geometric way to calculate $AE$ (as opposed to trigonometric): The diagonal $\overline{AC}$ is made of the altitude of the equilateral triangle and the altitude of the $45-45-90 \triangle$. The former is $\frac{AE\sqrt{3}}{2}$, and the latter is $\frac{AE}{2}$; thus $\frac{AE\sqrt{3} + AE}{2} = AC = \sqrt{2} \Longrightarrow AE= \sqrt{6}-\sqrt{2}$. The solution continues as above.

Solution 2

Since $\triangle AFE$ is equilateral, $\overline{AE} = \overline{AF}$. It follows that $\overline{FC} = \overline{EC}$. Let $\overline{FC} = x$. Then, $\overline{EF} = x\sqrt{2}$ and $\overline{DF} = 1-x$.

$\overline{AF} = \sqrt{1+(1-x)^2} = x\sqrt{2}$.

Square both sides and combine/move terms to get $x^2+2x-2 = 0$. Therefore $x = -1 + \sqrt{3}$ and $x = -1 - \sqrt{3}$. The second solution is obviously extraneous, so $x = -1 + \sqrt{3}$.

Now, consider the square ABCD to be on the Cartesian Coordinate Plane with $A = (0,0)$. Then, the line containing $\overline{AF}$ has slope $\frac{1}{2-\sqrt{3}}$ and equation $y = \frac{1}{2-\sqrt{3}}x$.

The distance from $\overline{DC}$ to $\overline{AF}$ is the distance from $y = 1$ to $y = \frac{1}{2-\sqrt{3}}x$.

Similarly, the distance from $\overline{AD}$ to $\overline{AF}$ is the distance from $x = 0$ to $y = \frac{1}{2-\sqrt{3}}x$.

For some value $x = s$, these two distances are equal.

$(s-0) = (1 - (\frac{1}{2-\sqrt{3}})s)$

Solving for s, $s = \frac{3 - \sqrt{3}}{6}$, and $a + b + c = 3 + 3 + 6 = 12$.

Solution 3

Suppose $\overline{AB} = \overline{AD} = x.$ Note that $\angle EAF = 60$ since the triangle is equilateral, and by symmetry, $\angle BAE = \angle DAF = 15.$ Note that if $\overline{AD} = x$ and $\angle BAE = 15$, then $\overline{AA'}=\frac{x}{\tan(15)}.$ Also note that \[AB = 1 = \overline{AA'} + \overline{A'B} = \frac{x}{\tan(15)} + x\] Using the fact $\tan(15) = 2-\sqrt{3}$, this yields \[x = \frac{1}{3+\sqrt{3}} = \frac{3-\sqrt{3}}{6} \rightarrow 3 + 3 + 6 = \boxed{12}\]

Elegant Solution

Why not solve in terms of the side $x$ only (single-variable beauty)? By similar triangles we obtain that $BE=\frac{x}{1-x}$, therefore $CE=\frac{1-2x}{1-x}$. Then $AE=\sqrt{2}*\frac{1-2x}{1-x}$. Using Pythagorean Theorem on $\triangle{ABE}$ yields $\frac{x^2}{(1-x)^2} + 1 = 2 * \frac{(1-2x)^2}{(1-x)^2}$. This means $6x^2-6x+1=0$, and it's clear we take the smaller root: $x=\frac{3-\sqrt{3}}{6}$. Answer: $\boxed{12}$.

Solution 5 (First part is similar to Solution 2)

Since $AEF$ is equilateral, $AE=EF$. Let $BE=x$. By the Pythagorean theorem, $1+x^2=2(1-x)^2$. Simplifying, we get $x^2-4x+1=0$. By the quadratic formula, the roots are $2 \pm \sqrt{3}$. Since $x<1$, we discard the root with the "+", giving $x=2-\sqrt{3}$. [asy] real n; n=0.26794919243; real m; m=0.2113248654; draw((0,0)--(0,n)--(1,0)--(0,0)); draw((0,m)--(m,m)--(m,0)); label((0,0), "$B$",SW); label((0,n), "$E$",SW); label((0,m), "$M$",SW); label((1,0), "$A$",SW); label((m,0), "$N$",SW); label((m,m), "$K$",NE); [/asy] Let the side length of the square be s. Since $MEK$ is similar to $ABE$, $s=\frac{2-\sqrt{3}-s}{2-\sqrt{3}}$. Solving, we get $s=\frac{3-\sqrt{3}}{6}$ and the final answer is $\boxed{012}$.

See also

2006 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png