Difference between revisions of "1998 CEMC Gauss (Grade 7) Problems/Problem 25"

m (Solution)
m (Solution)
Line 7: Line 7:
 
If the product <math>pq</math> is a power of <math>10,</math> and both <math>p</math> and <math>q</math> do not end in 0, then <math>p</math> must be in the form <math>5^n</math> and <math>q</math> must be in the form <math>2^n.</math>
 
If the product <math>pq</math> is a power of <math>10,</math> and both <math>p</math> and <math>q</math> do not end in 0, then <math>p</math> must be in the form <math>5^n</math> and <math>q</math> must be in the form <math>2^n.</math>
  
 +
We know that <math>5^n \equiv 5</math> for all positive integers <math>n</math> and <math>2^n \nequiv 0</math> for all integers <math>n</math>.
 
Start looking at small values of <math>n</math> and subtract:
 
Start looking at small values of <math>n</math> and subtract:
  

Revision as of 17:52, 7 April 2024

Problem

Two natural numbers, $p$ and $q,$ do not end in zero. The product of any pair, $p$ and $q,$ is a power of 10 (that is, 10, 100, 1000, 10 000 , ...). If $p > q$ , the last digit of $p-q$ cannot be

$\text{(A)}\ 1 \qquad \text{(B)}\ 3 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 7 \qquad \text{(E)}\ 9$

Solution

If the product $pq$ is a power of $10,$ and both $p$ and $q$ do not end in 0, then $p$ must be in the form $5^n$ and $q$ must be in the form $2^n.$

We know that $5^n \equiv 5$ for all positive integers $n$ and $2^n \nequiv 0$ (Error compiling LaTeX. Unknown error_msg) for all integers $n$. Start looking at small values of $n$ and subtract:

\[p=5, \quad q=2, \quad \rightarrow \quad p-q \equiv 3\] \[p=25, \quad q=4, \quad \rightarrow \quad p-q \equiv 1\] \[p=125, \quad q=8, \quad \rightarrow \quad p-q \equiv 7\] \[p=625, \quad q=16, \quad \rightarrow \quad p-q \equiv 9\]

This pattern continues in groups of $4$, and the only number not included is $\boxed{\textbf{(C)}\ 5}.$

-edited by coolmath34