Difference between revisions of "2004 AMC 12A Problems/Problem 8"
(→Solutions) |
(→Solutions) |
||
Line 34: | Line 34: | ||
== Solutions == | == Solutions == | ||
+ | ===Solution 0=== | ||
+ | Looking, we see that the area of <math>[\triangle EBA]</math> is 16 and the area of <math>[\triangle ABC]</math> is 12. Set the area of <math>[\triangle ADB]</math> to be x. We want to find <math>[\triangle ADE]</math> - <math>[\triangle CDB]</math>. So, that would be <math>[\triangle EBA]-[\triangle ADB]=16-x</math> and <math>[\triangle ABC]-[\triangle ADB]=12-x</math>. Therefore, <math></math>[\triangle ADE]-[\triangle DBC]=(16-x)-(12-x)=16-x-12+x=\boxed{\mathrm{(B)}\ 4}<math> | ||
+ | |||
+ | ~ MathKatana | ||
+ | |||
=== Solution 1 === | === Solution 1 === | ||
− | Since <math>AE \perp AB< | + | Since </math>AE \perp AB<math> and </math>BC \perp AB<math>, </math>AE \parallel BC<math>. By alternate interior angles and </math>AA\sim<math>, we find that </math>\triangle ADE \sim \triangle CDB<math>, with side length ratio </math>\frac{4}{3}<math>. Their heights also have the same ratio, and since the two heights add up to </math>4<math>, we have that </math>h_{ADE} = 4 \cdot \frac{4}{7} = \frac{16}{7}<math> and </math>h_{CDB} = 3 \cdot \frac 47 = \frac {12}7<math>. Subtracting the areas, </math>\frac{1}{2} \cdot 8 \cdot \frac {16}7 - \frac 12 \cdot 6 \cdot \frac{12}7 = 4<math> </math>\Rightarrow<math> </math>\boxed{\mathrm{(B)}\ 4}<math>. |
=== Solution 2 === | === Solution 2 === | ||
− | Let <math>[X]< | + | Let </math>[X]<math> represent the area of figure </math>X<math>. Note that </math>[\triangle BEA]=[\triangle ABD]+[\triangle ADE]<math> and </math>[\triangle BCA]=[\triangle ABD]+[\triangle BDC]<math>. |
− | <math>[\triangle ADE]-[\triangle BDC]=[\triangle BEA]-[\triangle BCA]=\frac{1}{2}\times8\times4-\frac{1}{2}\times6\times4= 16-12=4\Rightarrow\boxed{\mathrm{(B)}\ 4}< | + | </math>[\triangle ADE]-[\triangle BDC]=[\triangle BEA]-[\triangle BCA]=\frac{1}{2}\times8\times4-\frac{1}{2}\times6\times4= 16-12=4\Rightarrow\boxed{\mathrm{(B)}\ 4}<math> |
=== Solution 3 (coordbash)=== | === Solution 3 (coordbash)=== | ||
− | Put figure <math>ABCDE< | + | Put figure </math>ABCDE<math> on a graph. </math>\overline{AC}<math> goes from (0, 0) to (4, 6) and </math>\overline{BE}<math> goes from (4, 0) to (0, 8). </math>\overline{AC}<math> is on line </math>y = 1.5x<math>. </math>\overline{BE}<math> is on line </math>y = -2x + 8<math>. Finding intersection between these points, |
− | <math>1.5x = -2x + 8< | + | </math>1.5x = -2x + 8<math>. |
− | <math>3.5x = 8 < | + | </math>3.5x = 8 <math> |
− | <math> x = 8 \times \frac{2}{7}< | + | </math> x = 8 \times \frac{2}{7}<math> |
− | <math> = \frac{16}{7}< | + | </math> = \frac{16}{7}<math> |
This gives us the x-coordinate of D. | This gives us the x-coordinate of D. | ||
− | So, <math>\frac{16}{7}< | + | So, </math>\frac{16}{7}<math> is the height of </math>\triangle ADE<math>, then area of </math>\triangle ADE<math> is |
− | <math>\frac{16}{7} \times 8 \times \frac{1}{2}< | + | </math>\frac{16}{7} \times 8 \times \frac{1}{2}<math> |
− | <math> = \frac{64}{7}< | + | </math> = \frac{64}{7}<math> |
− | Now, the height of <math>\triangle BDC< | + | Now, the height of </math>\triangle BDC<math> is </math>4-\frac{16}{7} = \frac{12}{7}<math> |
− | And the area of <math>\triangle BDC< | + | And the area of </math>\triangle BDC<math> is </math>6 \times \frac{12}{7} \times \frac{1}{2} = \frac{36}{7}<math> |
− | This gives us <math>\frac{64}{7} - \frac{36}{7} = 4< | + | This gives us </math>\frac{64}{7} - \frac{36}{7} = 4<math> |
− | Therefore, the difference is <math>4< | + | Therefore, the difference is </math>4<math> |
=== Solution 4 === | === Solution 4 === | ||
− | We want to figure out <math>Area(\triangle ADE) - Area(\triangle BDC)< | + | We want to figure out </math>Area(\triangle ADE) - Area(\triangle BDC)<math>. |
− | Notice that <math>\triangle ABC< | + | Notice that </math>\triangle ABC<math> and </math>\triangle BAE<math> "intersect" and form </math>\triangle ADB<math>. |
− | This means that <math>Area(\triangle BAE) - Area(\triangle ABC) = Area(\triangle ADE) - Area(\triangle BDC)< | + | This means that </math>Area(\triangle BAE) - Area(\triangle ABC) = Area(\triangle ADE) - Area(\triangle BDC)<math> because </math>Area(\triangle ADB)<math> cancels out, which can be seen easily in the diagram. |
− | <math>Area(\triangle BAE) = 0.5 * 4 * 8 = 16< | + | </math>Area(\triangle BAE) = 0.5 * 4 * 8 = 16<math> |
− | <math>Area(\triangle ABC) = 0.5 * 4 * 16 = 12< | + | </math>Area(\triangle ABC) = 0.5 * 4 * 16 = 12<math> |
− | <math>Area(\triangle BDC) - Area(\triangle ADE) = 16 - 12 =\boxed{\mathrm{(B)}\ 4} | + | </math>Area(\triangle BDC) - Area(\triangle ADE) = 16 - 12 =\boxed{\mathrm{(B)}\ 4}$ |
==Video Solution== | ==Video Solution== |
Revision as of 18:36, 4 April 2024
- The following problem is from both the 2004 AMC 12A #8 and 2004 AMC 10A #9, so both problems redirect to this page.
Problem
In the overlapping triangles and sharing common side , and are right angles, , , , and and intersect at . What is the difference between the areas of and ?
Solutions
Solution 0
Looking, we see that the area of is 16 and the area of is 12. Set the area of to be x. We want to find - . So, that would be and . Therefore, $$ (Error compiling LaTeX. Unknown error_msg)[\triangle ADE]-[\triangle DBC]=(16-x)-(12-x)=16-x-12+x=\boxed{\mathrm{(B)}\ 4}$~ MathKatana
=== Solution 1 === Since$ (Error compiling LaTeX. Unknown error_msg)AE \perp ABBC \perp ABAE \parallel BCAA\sim\triangle ADE \sim \triangle CDB\frac{4}{3}4h_{ADE} = 4 \cdot \frac{4}{7} = \frac{16}{7}h_{CDB} = 3 \cdot \frac 47 = \frac {12}7\frac{1}{2} \cdot 8 \cdot \frac {16}7 - \frac 12 \cdot 6 \cdot \frac{12}7 = 4$$ (Error compiling LaTeX. Unknown error_msg)\Rightarrow$$ (Error compiling LaTeX. Unknown error_msg)\boxed{\mathrm{(B)}\ 4}$.
=== Solution 2 === Let$ (Error compiling LaTeX. Unknown error_msg)[X]X[\triangle BEA]=[\triangle ABD]+[\triangle ADE][\triangle BCA]=[\triangle ABD]+[\triangle BDC][\triangle ADE]-[\triangle BDC]=[\triangle BEA]-[\triangle BCA]=\frac{1}{2}\times8\times4-\frac{1}{2}\times6\times4= 16-12=4\Rightarrow\boxed{\mathrm{(B)}\ 4}ABCDE\overline{AC}\overline{BE}\overline{AC}y = 1.5x\overline{BE}y = -2x + 81.5x = -2x + 83.5x = 8 $$ (Error compiling LaTeX. Unknown error_msg) x = 8 \times \frac{2}{7}$$ (Error compiling LaTeX. Unknown error_msg) = \frac{16}{7}\frac{16}{7}\triangle ADE\triangle ADE\frac{16}{7} \times 8 \times \frac{1}{2}$$ (Error compiling LaTeX. Unknown error_msg) = \frac{64}{7}\triangle BDC4-\frac{16}{7} = \frac{12}{7}\triangle BDC6 \times \frac{12}{7} \times \frac{1}{2} = \frac{36}{7}\frac{64}{7} - \frac{36}{7} = 44Area(\triangle ADE) - Area(\triangle BDC)\triangle ABC\triangle BAE\triangle ADB$.
This means that$ (Error compiling LaTeX. Unknown error_msg)Area(\triangle BAE) - Area(\triangle ABC) = Area(\triangle ADE) - Area(\triangle BDC)Area(\triangle ADB)Area(\triangle BAE) = 0.5 * 4 * 8 = 16$$ (Error compiling LaTeX. Unknown error_msg)Area(\triangle ABC) = 0.5 * 4 * 16 = 12$$ (Error compiling LaTeX. Unknown error_msg)Area(\triangle BDC) - Area(\triangle ADE) = 16 - 12 =\boxed{\mathrm{(B)}\ 4}$
Video Solution
Education, the Study of Everything
See also
2004 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 7 |
Followed by Problem 9 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2004 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.