Difference between revisions of "1950 AHSME Problems/Problem 41"

m (Solution 2)
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
  
The least value of the function <math> ax^2\plus{}bx\plus{}c</math> with <math>a>0</math> is:
+
The least value of the function <math>ax^2 + bx + c</math> with <math>a>0</math> is:
  
 
<math>\textbf{(A)}\ -\dfrac{b}{a} \qquad
 
<math>\textbf{(A)}\ -\dfrac{b}{a} \qquad
Line 12: Line 12:
  
 
The vertex of a parabola is at <math>x=-\frac{b}{2a}</math> for <math>ax^2+bx+c</math>. Because <math>a>0</math>, the vertex is a minimum. Therefore <math>a(-\frac{b}{2a})^2+b(-\frac{b}{2a})+c=a(\frac{b^2}{4a^2})-\frac{b^2}{2a}+c=\frac{b^2}{4a}-\frac{2b^2}{4a}+c=-\frac{b^2}{4a}+c=\frac{4ac}{4a}-\frac {b^2}{4a}=\frac{4ac-b^2}{4a} \Rightarrow \mathrm{(D)}</math>.
 
The vertex of a parabola is at <math>x=-\frac{b}{2a}</math> for <math>ax^2+bx+c</math>. Because <math>a>0</math>, the vertex is a minimum. Therefore <math>a(-\frac{b}{2a})^2+b(-\frac{b}{2a})+c=a(\frac{b^2}{4a^2})-\frac{b^2}{2a}+c=\frac{b^2}{4a}-\frac{2b^2}{4a}+c=-\frac{b^2}{4a}+c=\frac{4ac}{4a}-\frac {b^2}{4a}=\frac{4ac-b^2}{4a} \Rightarrow \mathrm{(D)}</math>.
 +
 +
==Solution 2 ==
 +
 +
Using calculus, we find that the derivative of the function is <math>2ax + b</math>, which has a critical point at <math>\frac{-b}{2a}</math>. The second derivative of the function is <math>2a</math>; since <math>a > 0</math>, this critical point is a minimum. As in Solution 1, plug this value into the function to obtain <math>\boxed{\textbf{(D)}\ \dfrac{4ac-b^2}{4a}}</math>.
 +
 +
~ [https://artofproblemsolving.com/wiki/index.php/User:Cxsmi cxsmi]
  
 
==See Also==
 
==See Also==

Latest revision as of 12:43, 4 April 2024

Problem

The least value of the function $ax^2 + bx + c$ with $a>0$ is:

$\textbf{(A)}\ -\dfrac{b}{a} \qquad \textbf{(B)}\ -\dfrac{b}{2a} \qquad \textbf{(C)}\ b^2-4ac \qquad \textbf{(D)}\ \dfrac{4ac-b^2}{4a}\qquad \textbf{(E)}\ \text{None of these}$

Solution

The vertex of a parabola is at $x=-\frac{b}{2a}$ for $ax^2+bx+c$. Because $a>0$, the vertex is a minimum. Therefore $a(-\frac{b}{2a})^2+b(-\frac{b}{2a})+c=a(\frac{b^2}{4a^2})-\frac{b^2}{2a}+c=\frac{b^2}{4a}-\frac{2b^2}{4a}+c=-\frac{b^2}{4a}+c=\frac{4ac}{4a}-\frac {b^2}{4a}=\frac{4ac-b^2}{4a} \Rightarrow \mathrm{(D)}$.

Solution 2

Using calculus, we find that the derivative of the function is $2ax + b$, which has a critical point at $\frac{-b}{2a}$. The second derivative of the function is $2a$; since $a > 0$, this critical point is a minimum. As in Solution 1, plug this value into the function to obtain $\boxed{\textbf{(D)}\ \dfrac{4ac-b^2}{4a}}$.

~ cxsmi

See Also

1950 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 40
Followed by
Problem 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png