Difference between revisions of "Karamata's Inequality"
(New page: '''Karamata's Inequality''' states that if <math>(x_i)</math> majores <math>(y_i)</math> and <math>f</math> is a convex function, then <center><math>\sum_{i=1}^{n}f(x...) |
(→Proof) |
||
(12 intermediate revisions by 8 users not shown) | |||
Line 1: | Line 1: | ||
− | '''Karamata's Inequality''' states that if <math>( | + | '''Karamata's Inequality''' states that if <math>(a_i)</math> [[Majorization|majorizes]] <math>(b_i)</math> and <math>f</math> is a [[convex function]], then |
− | < | + | <cmath>\sum_{i=1}^{n}f(a_i)\geq \sum_{i=1}^{n}f(b_i)</cmath> |
==Proof== | ==Proof== | ||
− | {{ | + | We will first use an important fact: |
+ | If <math>f(x)</math> is convex over the interval <math>(a, b)</math>, then <math>\forall a\leq x_1\leq x_2 \leq b</math> and <math>\Gamma(x, y):=\frac{f(y)-f(x)}{y-x}</math>, <math>\Gamma(x_1, x)\leq \Gamma (x_2, x)</math> | ||
+ | |||
+ | This is proven by taking casework on <math>x\neq x_1,x_2</math>. If <math>x<x_1</math>, then | ||
+ | <cmath>\Gamma(x_1, x)=\frac{f(x_1)-f(x)}{x_1-x}\leq \frac{f(x_2)-f(x)}{x_2-x}=\Gamma(x_2, x)</cmath> | ||
+ | |||
+ | A similar argument shows for other values of <math>x</math>. | ||
+ | |||
+ | Now, define a sequence <math>C</math> such that: | ||
+ | <cmath>c_i=\Gamma(a_i, b_i)</cmath> | ||
+ | |||
+ | Define the sequences <math>A_i</math> such that | ||
+ | <cmath>A_i=\sum_{j=1}^{i}a_j, A_0=0</cmath> | ||
+ | and <math>B_i</math> similarly. | ||
+ | |||
+ | Then, assuming <math>a_i\geq a_{i+1}</math> and similarily with the <math>b_i</math>'s, we get that <math>c_i\geq c_{i+1}</math>. Now, we know: | ||
+ | <cmath>\sum_{i=1}^{n}f(a_i) - \sum_{i=1}^{n}f(b_i)=\sum_{i=1}^{n}f(a_i)-f(b_i)=\sum_{i=1}^{n}c_i(a_i-b_i)=\sum_{i=1}^{n}c_i(A_i-A_{i-1}-B_i+B_{i+1})</cmath><cmath>\sum_{i=1}^{n}c_i(A_i-A_{i-1}-B_i+B_{i+1})=\sum_{i=1}^{n}c_i(A_i-B_i) - \sum_{i=0}^{n-1}c_{i+1}(A_i-B_i)=\sum_{i=0}^{n-1}c_i(A_i-B_i) - \sum_{i=0}^{n-1}c_{i+1}(A_i-B_i)</cmath><cmath>\sum_{i=0}^{n-1}c_i(A_i-B_i) - \sum_{i=0}^{n-1}c_{i+1}(A_i-B_i)=\sum_{i=1}^{n}(c_i-c_{i+1})(A_i-B_i)\geq 0</cmath>. | ||
+ | |||
+ | Therefore, <cmath>\sum_{i=1}^{n}f(a_i) \geq \sum_{i=1}^{n}f(b_i)</cmath> | ||
+ | |||
+ | Thus, we have proven Karamata's Theorem. | ||
+ | |||
+ | |||
+ | {{stub}} | ||
==See also== | ==See also== | ||
− | + | ||
[[Category:Algebra]] | [[Category:Algebra]] | ||
+ | [[Category:Inequalities]] |
Latest revision as of 02:39, 28 March 2024
Karamata's Inequality states that if majorizes and is a convex function, then
Proof
We will first use an important fact: If is convex over the interval , then and ,
This is proven by taking casework on . If , then
A similar argument shows for other values of .
Now, define a sequence such that:
Define the sequences such that and similarly.
Then, assuming and similarily with the 's, we get that . Now, we know: .
Therefore,
Thus, we have proven Karamata's Theorem.
This article is a stub. Help us out by expanding it.