Difference between revisions of "2007 IMO Shortlist Problems/A1"
Pocofrosty12 (talk | contribs) m (→Problem) |
|||
Line 2: | Line 2: | ||
(''New Zealand'') | (''New Zealand'') | ||
You are given a sequence <math>a_1,a_2,\dots ,a_n</math> of numbers. For each <math>i</math> (<math>1\leq i\leq n</math>) define | You are given a sequence <math>a_1,a_2,\dots ,a_n</math> of numbers. For each <math>i</math> (<math>1\leq i\leq n</math>) define | ||
− | |||
<center><math>d_i=\max\{a_j:1\leq j\leq i\}-\min\{a_j:i\leq j\leq n\}</math></center> | <center><math>d_i=\max\{a_j:1\leq j\leq i\}-\min\{a_j:i\leq j\leq n\}</math></center> | ||
− | |||
and let | and let | ||
− | |||
<center><math>d=\max\{d_i:1\leq i\leq n\}</math>.</center> | <center><math>d=\max\{d_i:1\leq i\leq n\}</math>.</center> | ||
− | |||
(a) Prove that for arbitrary real numbers <math>x_1\leq x_2\leq \dots \leq x_n</math>, | (a) Prove that for arbitrary real numbers <math>x_1\leq x_2\leq \dots \leq x_n</math>, | ||
− | |||
<center><math>\max\{|x_i-a_i|:1\leq i\leq n\}\geq \frac{d}{2}</math>.</center> | <center><math>\max\{|x_i-a_i|:1\leq i\leq n\}\geq \frac{d}{2}</math>.</center> | ||
− | |||
(b) Show that there exists a sequence <math>x_1\leq x_2\leq \dots \leq x_n</math> of real numbers such that we have equality in (a). | (b) Show that there exists a sequence <math>x_1\leq x_2\leq \dots \leq x_n</math> of real numbers such that we have equality in (a). | ||
== Solution == | == Solution == | ||
− | {{ | + | Since <math>d_i=\max\{a_j:1\le j\le i\}-\min\{a_j:i\le j\le n\}</math>, all <math>d_i</math> can be expressed as <math>a_p-a_q</math>, where <math>1\le p\le i\le q \le n</math>. |
+ | Thus, <math>d</math> can be expressed as <math>a_p-a_q</math> for some <math>p</math> and <math>q</math>, <math>1\le p\le q\le n</math> | ||
+ | Lemma) <math>d\ge 0</math> | ||
+ | Assume for contradiction that <math>d<0</math>, then for all <math>i</math>, <math>a_i \le \max\{a_j:1\le j\le i\}\le \min\{a_j:i\le j\le n\}\le a_{i+1}</math> | ||
+ | <math>a_i\le a_{i+1}</math> | ||
+ | Then, <math>{a_i}</math> is a non-decreasing function, which means, <math>\max\{a_j:1\le j\le i\}=a_i</math>, and <math>\min\{a_j:i\le j\le n\}\le a_{i+1}=a_i</math>, which means, <math>{d_i}={0}</math>. | ||
+ | Then, <math>d=0</math> and contradiction. | ||
+ | |||
+ | a) Case 1) <math>d=0</math> | ||
+ | If <math>d=0</math>, <math>\max\{|x_i-a_i|:1\le i\le n\}</math> is the maximum of a set of non-negative number, which must be at least <math>0</math>. | ||
+ | Case 2) <math>d>0</math> (We can ignore <math>d<0</math> because of lemma) | ||
+ | Using the fact that <math>d</math> can be expressed as <math>a_p-a_q</math> for some <math>p</math> and <math>q</math>, <math>1\le p\le q\le n</math>. <math>x_p\le x_q</math> | ||
+ | Assume for contradiction that <math>\max\{|x_i-a_i|:1\le i\le n\}<\dfrac{d}{2}</math>. | ||
+ | Then, <math>\forall x_i</math>, <math>|x_i-a_i|<\dfrac{d}{2}</math>. | ||
+ | <math>|x_p-a_p|<\dfrac{d}{2}</math>, and <math>|x_q-a_q|<\dfrac{d}{2}</math> | ||
+ | Thus, <math>x_p>a_p-\dfrac{d}{2}</math> and <math>x_q<a_q+\dfrac{d}{2}</math>. | ||
+ | Subtracting the two inequality, we will obtain: | ||
+ | <cmath>x_p-x_q>a_p-a_q-d=a_p-a_q-a_p+a_q=0</cmath> | ||
+ | <math>x_p>x_q</math> --- contradiction (<math>p\le q \rightarrow x_p\le x_q</math>). | ||
+ | Thus, <math>\max\{|x_i-a_i|:1\le i\le n\}\ge\dfrac{d}{2}</math> | ||
+ | |||
+ | (b) A set of <math>{x_i}</math> where the equality in (*) holds is: | ||
+ | <cmath>x_i=\max\{a_j:1\le j\le i\}-\frac{d}{2}</cmath> | ||
+ | Since <math>\max\{a_j:1\le j\le i\}</math> is a non-decreasing function, <math>x_i</math> is non-decreasing. | ||
+ | <math>\forall x_i</math> : | ||
+ | Let <math>a_m=\max\{a_j:1\le j\le i\}</math>, <math>a_m-a_i<a_m-\min\{a_j:i\le j\le n\}=d_i</math>. | ||
+ | Thus, <math>0\le a_m-a_i \le d</math> (<math>0\le a_m-a_i</math> because <math>a_m</math> is the max of a set including <math>a_i</math>) | ||
+ | <math>|x_i-a_i|=\left|a_m-\dfrac{d}{2}-a_i\right|=\left|(a_m-a_i)\dfrac{d}{2}\right|</math> | ||
+ | <math>0\le a_m-a_i\le d</math> | ||
+ | <math>-\dfrac{d}{2} \le (a_m-a_i)\dfrac{d}{2} \le \dfrac{d}{2}</math> | ||
+ | <math>\left|(a_m-a_i)-\dfrac{d}{2}\right|=|x_i-a_i|\le \frac{d}{2}</math> | ||
+ | Since <math>\max\{|x_i-a_i|:1\le i\le n\}\ge\dfrac{d}{2}</math> and <math>|x_i-a_i|\le \frac{d}{2}</math> <math>\forall x_i</math>, <math>\max\{|x_i-a_i|:1\le i\le n\}=\dfrac{d}{2}</math>.\\ | ||
+ | (Taken from https://artofproblemsolving.com/wiki/index.php/2007_IMO_Problems/Problem_1) | ||
== Resources == | == Resources == | ||
* [[2007 IMO Shortlist Problems]] | * [[2007 IMO Shortlist Problems]] | ||
[[Category:Olympiad Algebra Problems]] | [[Category:Olympiad Algebra Problems]] |
Latest revision as of 04:11, 26 March 2024
Problem
(New Zealand) You are given a sequence of numbers. For each () define
and let
(a) Prove that for arbitrary real numbers ,
(b) Show that there exists a sequence of real numbers such that we have equality in (a).
Solution
Since , all can be expressed as , where . Thus, can be expressed as for some and , Lemma) Assume for contradiction that , then for all , Then, is a non-decreasing function, which means, , and , which means, . Then, and contradiction.
a) Case 1) If , is the maximum of a set of non-negative number, which must be at least . Case 2) (We can ignore because of lemma) Using the fact that can be expressed as for some and , . Assume for contradiction that . Then, , . , and Thus, and . Subtracting the two inequality, we will obtain: --- contradiction (). Thus,
(b) A set of where the equality in (*) holds is: Since is a non-decreasing function, is non-decreasing. : Let , . Thus, ( because is the max of a set including ) Since and , .\\ (Taken from https://artofproblemsolving.com/wiki/index.php/2007_IMO_Problems/Problem_1)