Difference between revisions of "2024 USAJMO Problems/Problem 1"
Technodoggo (talk | contribs) |
Technodoggo (talk | contribs) (sol 1 womp womp) |
||
Line 1: | Line 1: | ||
__TOC__ | __TOC__ | ||
− | + | ==Problem== | |
+ | |||
+ | sus | ||
+ | |||
+ | ==Solution 1== | ||
+ | |||
+ | First, let <math>E</math> and <math>F</math> be the midpoints of <math>AB</math> and <math>CD</math>, respectively. It is clear that <math>AE=BE=3.5</math>, <math>PE=QE=0.5</math>, <math>DF=CF=4</math>, and <math>SF=RF=2</math>. Also, let <math>O</math> be the circumcenter of <math>ABCD</math>. | ||
+ | |||
+ | [asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ | ||
+ | import graph; size(12cm); | ||
+ | real labelscalefactor = 0.5; /* changes label-to-point distance */ | ||
+ | pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ | ||
+ | pen dotstyle = black; /* point style */ | ||
+ | real xmin = -12.19, xmax = 24.94, ymin = -15.45, ymax = 6.11; /* image dimensions */ | ||
+ | pen wrwrwr = rgb(0.38,0.38,0.38); | ||
+ | /* draw figures */ | ||
+ | draw(circle((2.92,-3.28), 5.90), linewidth(2) + wrwrwr); | ||
+ | draw((-2.52,-1.01)--(3.46,2.59), linewidth(2) + wrwrwr); | ||
+ | draw((7.59,-6.88)--(-0.29,-8.22), linewidth(2) + wrwrwr); | ||
+ | draw((3.46,2.59)--(7.59,-6.88), linewidth(2) + wrwrwr); | ||
+ | draw((-0.29,-8.22)--(-2.52,-1.01), linewidth(2) + wrwrwr); | ||
+ | draw((0.03,0.52)--(1.67,-7.89), linewidth(2) + wrwrwr); | ||
+ | draw((5.61,-7.22)--(0.89,1.04), linewidth(2) + wrwrwr); | ||
+ | /* dots and labels */ | ||
+ | dot((2.92,-3.28),dotstyle); | ||
+ | label("<math>O</math>", (2.43,-3.56), NE * labelscalefactor); | ||
+ | dot((-2.52,-1.01),dotstyle); | ||
+ | label("<math>A</math>", (-2.91,-0.91), NE * labelscalefactor); | ||
+ | dot((3.46,2.59),linewidth(4pt) + dotstyle); | ||
+ | label("<math>B</math>", (3.49,2.78), NE * labelscalefactor); | ||
+ | dot((7.59,-6.88),dotstyle); | ||
+ | label("<math>C</math>", (7.82,-7.24), NE * labelscalefactor); | ||
+ | dot((-0.29,-8.22),linewidth(4pt) + dotstyle); | ||
+ | label("<math>D</math>", (-0.53,-8.62), NE * labelscalefactor); | ||
+ | dot((0.03,0.52),linewidth(4pt) + dotstyle); | ||
+ | label("<math>P</math>", (-0.13,0.67), NE * labelscalefactor); | ||
+ | dot((0.89,1.04),linewidth(4pt) + dotstyle); | ||
+ | label("<math>Q</math>", (0.62,1.16), NE * labelscalefactor); | ||
+ | dot((5.61,-7.22),linewidth(4pt) + dotstyle); | ||
+ | label("<math>R</math>", (5.70,-7.05), NE * labelscalefactor); | ||
+ | dot((1.67,-7.89),linewidth(4pt) + dotstyle); | ||
+ | label("<math>S</math>", (1.75,-7.73), NE * labelscalefactor); | ||
+ | dot((0.46,0.78),linewidth(4pt) + dotstyle); | ||
+ | label("<math>E</math>", (0.26,0.93), NE * labelscalefactor); | ||
+ | dot((3.64,-7.55),linewidth(4pt) + dotstyle); | ||
+ | label("<math>F</math>", (3.73,-7.39), NE * labelscalefactor); | ||
+ | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | ||
+ | /* end of picture */[/asy] | ||
+ | |||
+ | By properties of cyclic quadrilaterals, we know that the circumcenter of a cyclic quadrilateral is the intersection of its sides' perpendicular bisectors. This implies that <math>OE\perp AB</math> and <math>OF\perp CD</math>. Since <math>E</math> and <math>F</math> are also bisectors of <math>PQ</math> and <math>RS</math>, respectively, if <math>PQRS</math> is indeed a cyclic quadrilateral, then its circumcenter is also at <math>O</math>. Thus, it suffices to show that <math>OP=OQ=OR=OS</math>. | ||
+ | |||
+ | Notice that <math>PE=QE</math>, <math>EO=EO</math>, and <math>\angle QEO=\angle PEO=90^\circ</math>. By SAS congruency, <math>\Delta QOE\cong\Delta POE\implies QO=PO</math>. Similarly, we find that <math>\Delta SOF\cong\Delta ROF</math> and <math>OS=OR</math>. We now need only to show that these two pairs are equal to each other. | ||
+ | |||
+ | Draw the segments connecting <math>O</math> to <math>B</math>, <math>Q</math>, <math>C</math>, and <math>R</math>. | ||
+ | |||
+ | [asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ | ||
+ | import graph; size(12cm); | ||
+ | real labelscalefactor = 0.5; /* changes label-to-point distance */ | ||
+ | pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ | ||
+ | pen dotstyle = black; /* point style */ | ||
+ | real xmin = -12.19, xmax = 24.94, ymin = -15.45, ymax = 6.11; /* image dimensions */ | ||
+ | pen wrwrwr = rgb(0.38,0.38,0.38); | ||
+ | /* draw figures */ | ||
+ | draw(circle((2.92,-3.28), 5.90), linewidth(2) + wrwrwr); | ||
+ | draw((-2.52,-1.01)--(3.46,2.59), linewidth(2) + wrwrwr); | ||
+ | draw((7.59,-6.88)--(-0.29,-8.22), linewidth(2) + wrwrwr); | ||
+ | draw((3.46,2.59)--(7.59,-6.88), linewidth(2) + wrwrwr); | ||
+ | draw((-0.29,-8.22)--(-2.52,-1.01), linewidth(2) + wrwrwr); | ||
+ | draw((0.03,0.52)--(1.67,-7.89), linewidth(2) + wrwrwr); | ||
+ | draw((5.61,-7.22)--(0.89,1.04), linewidth(2) + wrwrwr); | ||
+ | draw((0.46,0.78)--(2.92,-3.28), linewidth(2) + wrwrwr); | ||
+ | draw((2.92,-3.28)--(3.64,-7.55), linewidth(2) + wrwrwr); | ||
+ | draw((2.92,-3.28)--(7.59,-6.88), linewidth(2) + wrwrwr); | ||
+ | draw((5.61,-7.22)--(2.92,-3.28), linewidth(2) + wrwrwr); | ||
+ | draw((2.92,-3.28)--(3.46,2.59), linewidth(2) + wrwrwr); | ||
+ | draw((2.92,-3.28)--(0.89,1.04), linewidth(2) + wrwrwr); | ||
+ | /* dots and labels */ | ||
+ | dot((2.92,-3.28),dotstyle); | ||
+ | label("<math>O</math>", (2.43,-3.56), NE * labelscalefactor); | ||
+ | dot((-2.52,-1.01),dotstyle); | ||
+ | label("<math>A</math>", (-2.91,-0.91), NE * labelscalefactor); | ||
+ | dot((3.46,2.59),linewidth(1pt) + dotstyle); | ||
+ | label("<math>B</math>", (3.49,2.78), NE * labelscalefactor); | ||
+ | dot((7.59,-6.88),dotstyle); | ||
+ | label("<math>C</math>", (7.82,-7.24), NE * labelscalefactor); | ||
+ | dot((-0.29,-8.22),linewidth(1pt) + dotstyle); | ||
+ | label("<math>D</math>", (-0.53,-8.62), NE * labelscalefactor); | ||
+ | dot((0.03,0.52),linewidth(1pt) + dotstyle); | ||
+ | label("<math>P</math>", (-0.13,0.67), NE * labelscalefactor); | ||
+ | dot((0.89,1.04),linewidth(1pt) + dotstyle); | ||
+ | label("<math>Q</math>", (0.62,1.16), NE * labelscalefactor); | ||
+ | dot((5.61,-7.22),linewidth(1pt) + dotstyle); | ||
+ | label("<math>R</math>", (5.70,-7.05), NE * labelscalefactor); | ||
+ | dot((1.67,-7.89),linewidth(1pt) + dotstyle); | ||
+ | label("<math>S</math>", (1.75,-7.73), NE * labelscalefactor); | ||
+ | dot((0.46,0.78),linewidth(1pt) + dotstyle); | ||
+ | label("<math>E</math>", (0.26,0.93), NE * labelscalefactor); | ||
+ | dot((3.64,-7.55),linewidth(1pt) + dotstyle); | ||
+ | label("<math>F</math>", (3.73,-7.39), NE * labelscalefactor); | ||
+ | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | ||
+ | /* end of picture */[/asy] | ||
+ | |||
+ | Also, let <math>r</math> be the circumradius of <math>ABCD</math>. This means that <math>AO=BO=CO=DO=r</math>. Recall that <math>\angle BEO=90^\circ</math> and <math>\angle CFO=90^\circ</math>. Notice the several right triangles in our figure. | ||
+ | |||
+ | Let us apply Pythagorean Theorem on <math>\Delta BEO</math>. We can see that <math>EO^2+EB^2=BO^2\implies EO^2+3.5^2=r^2\implies EO=\sqrt{r^2-12.25}.</math> | ||
+ | |||
+ | Let us again apply Pythagorean Theorem on <math>\Delta QEO</math>. We can see that <math>QE^2+EO^2=QO^2\implies0.5^2+r^2-12.25=QO^2\implies QO=\sqrt{r^2-12}.</math> | ||
+ | |||
+ | Let us apply Pythagorean Theorem on <math>\Delta CFO</math>. We get <math>CF^2+OF^2=OC^2\implies4^2+OF^2=r^2\implies OF=\sqrt{r^2-16}</math>. | ||
+ | |||
+ | We finally apply Pythagorean Theorem on <math>\Delta RFO</math>. This becomes <math>OF^2+FR^2=OR^2\implies r^2-16+2^2=OR^2\implies OR=\sqrt{r^2-12}</math>. | ||
+ | |||
+ | This is the same expression as we got for <math>QO</math>. Thus, <math>OQ=OR</math>, and recalling that <math>OQ=OP</math> and <math>OR=OS</math>, we have shown that <math>OP=OQ=OR=OS</math>. We are done. QED | ||
+ | |||
+ | ~Technodoggo | ||
==See Also== | ==See Also== | ||
{{USAJMO newbox|year=2024|before=First Question|num-a=2}} | {{USAJMO newbox|year=2024|before=First Question|num-a=2}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 23:02, 19 March 2024
Contents
Problem
sus
Solution 1
First, let and be the midpoints of and , respectively. It is clear that , , , and . Also, let be the circumcenter of .
[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(12cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -12.19, xmax = 24.94, ymin = -15.45, ymax = 6.11; /* image dimensions */ pen wrwrwr = rgb(0.38,0.38,0.38);
/* draw figures */
draw(circle((2.92,-3.28), 5.90), linewidth(2) + wrwrwr); draw((-2.52,-1.01)--(3.46,2.59), linewidth(2) + wrwrwr); draw((7.59,-6.88)--(-0.29,-8.22), linewidth(2) + wrwrwr); draw((3.46,2.59)--(7.59,-6.88), linewidth(2) + wrwrwr); draw((-0.29,-8.22)--(-2.52,-1.01), linewidth(2) + wrwrwr); draw((0.03,0.52)--(1.67,-7.89), linewidth(2) + wrwrwr); draw((5.61,-7.22)--(0.89,1.04), linewidth(2) + wrwrwr);
/* dots and labels */
dot((2.92,-3.28),dotstyle); label("", (2.43,-3.56), NE * labelscalefactor); dot((-2.52,-1.01),dotstyle); label("", (-2.91,-0.91), NE * labelscalefactor); dot((3.46,2.59),linewidth(4pt) + dotstyle); label("", (3.49,2.78), NE * labelscalefactor); dot((7.59,-6.88),dotstyle); label("", (7.82,-7.24), NE * labelscalefactor); dot((-0.29,-8.22),linewidth(4pt) + dotstyle); label("", (-0.53,-8.62), NE * labelscalefactor); dot((0.03,0.52),linewidth(4pt) + dotstyle); label("", (-0.13,0.67), NE * labelscalefactor); dot((0.89,1.04),linewidth(4pt) + dotstyle); label("", (0.62,1.16), NE * labelscalefactor); dot((5.61,-7.22),linewidth(4pt) + dotstyle); label("", (5.70,-7.05), NE * labelscalefactor); dot((1.67,-7.89),linewidth(4pt) + dotstyle); label("", (1.75,-7.73), NE * labelscalefactor); dot((0.46,0.78),linewidth(4pt) + dotstyle); label("", (0.26,0.93), NE * labelscalefactor); dot((3.64,-7.55),linewidth(4pt) + dotstyle); label("", (3.73,-7.39), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy]
By properties of cyclic quadrilaterals, we know that the circumcenter of a cyclic quadrilateral is the intersection of its sides' perpendicular bisectors. This implies that and . Since and are also bisectors of and , respectively, if is indeed a cyclic quadrilateral, then its circumcenter is also at . Thus, it suffices to show that .
Notice that , , and . By SAS congruency, . Similarly, we find that and . We now need only to show that these two pairs are equal to each other.
Draw the segments connecting to , , , and .
[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(12cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -12.19, xmax = 24.94, ymin = -15.45, ymax = 6.11; /* image dimensions */ pen wrwrwr = rgb(0.38,0.38,0.38);
/* draw figures */
draw(circle((2.92,-3.28), 5.90), linewidth(2) + wrwrwr); draw((-2.52,-1.01)--(3.46,2.59), linewidth(2) + wrwrwr); draw((7.59,-6.88)--(-0.29,-8.22), linewidth(2) + wrwrwr); draw((3.46,2.59)--(7.59,-6.88), linewidth(2) + wrwrwr); draw((-0.29,-8.22)--(-2.52,-1.01), linewidth(2) + wrwrwr); draw((0.03,0.52)--(1.67,-7.89), linewidth(2) + wrwrwr); draw((5.61,-7.22)--(0.89,1.04), linewidth(2) + wrwrwr); draw((0.46,0.78)--(2.92,-3.28), linewidth(2) + wrwrwr); draw((2.92,-3.28)--(3.64,-7.55), linewidth(2) + wrwrwr); draw((2.92,-3.28)--(7.59,-6.88), linewidth(2) + wrwrwr); draw((5.61,-7.22)--(2.92,-3.28), linewidth(2) + wrwrwr); draw((2.92,-3.28)--(3.46,2.59), linewidth(2) + wrwrwr); draw((2.92,-3.28)--(0.89,1.04), linewidth(2) + wrwrwr);
/* dots and labels */
dot((2.92,-3.28),dotstyle); label("", (2.43,-3.56), NE * labelscalefactor); dot((-2.52,-1.01),dotstyle); label("", (-2.91,-0.91), NE * labelscalefactor); dot((3.46,2.59),linewidth(1pt) + dotstyle); label("", (3.49,2.78), NE * labelscalefactor); dot((7.59,-6.88),dotstyle); label("", (7.82,-7.24), NE * labelscalefactor); dot((-0.29,-8.22),linewidth(1pt) + dotstyle); label("", (-0.53,-8.62), NE * labelscalefactor); dot((0.03,0.52),linewidth(1pt) + dotstyle); label("", (-0.13,0.67), NE * labelscalefactor); dot((0.89,1.04),linewidth(1pt) + dotstyle); label("", (0.62,1.16), NE * labelscalefactor); dot((5.61,-7.22),linewidth(1pt) + dotstyle); label("", (5.70,-7.05), NE * labelscalefactor); dot((1.67,-7.89),linewidth(1pt) + dotstyle); label("", (1.75,-7.73), NE * labelscalefactor); dot((0.46,0.78),linewidth(1pt) + dotstyle); label("", (0.26,0.93), NE * labelscalefactor); dot((3.64,-7.55),linewidth(1pt) + dotstyle); label("", (3.73,-7.39), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy]
Also, let be the circumradius of . This means that . Recall that and . Notice the several right triangles in our figure.
Let us apply Pythagorean Theorem on . We can see that
Let us again apply Pythagorean Theorem on . We can see that
Let us apply Pythagorean Theorem on . We get .
We finally apply Pythagorean Theorem on . This becomes .
This is the same expression as we got for . Thus, , and recalling that and , we have shown that . We are done. QED
~Technodoggo
See Also
2024 USAJMO (Problems • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAJMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.