Difference between revisions of "2000 AIME I Problems/Problem 7"
(Added solution) |
m (cat) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Suppose that <math>x,</math> <math>y,</math> and <math>z</math> are three positive numbers that satisfy the equations <math>xyz = 1,</math> <math>x + \frac {1}{z} = 5,</math> and <math>y + \frac {1}{x} = 29.</math> Then <math>z + \frac {1}{y} = \frac {m}{n},</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n</math>. | + | Suppose that <math>x,</math> <math>y,</math> and <math>z</math> are three positive numbers that satisfy the equations <math>xyz = 1,</math> <math>x + \frac {1}{z} = 5,</math> and <math>y + \frac {1}{x} = 29.</math> Then <math>z + \frac {1}{y} = \frac {m}{n},</math> where <math>m</math> and <math>n</math> are [[relatively prime]] positive integers. Find <math>m + n</math>. |
== Solution == | == Solution == | ||
Let <math>r = \frac{m}{n} = z + \frac {1}{y}</math>. | Let <math>r = \frac{m}{n} = z + \frac {1}{y}</math>. | ||
− | < | + | <cmath> |
\begin{align*} | \begin{align*} | ||
(5)(29)(r)&=\left(x + \frac {1}{z}\right)\left(y + \frac {1}{x}\right)\left(z + \frac {1}{y}\right)\\ | (5)(29)(r)&=\left(x + \frac {1}{z}\right)\left(y + \frac {1}{x}\right)\left(z + \frac {1}{y}\right)\\ | ||
Line 14: | Line 14: | ||
&=36 + r | &=36 + r | ||
\end{align*} | \end{align*} | ||
− | </ | + | </cmath> |
− | Thus <math>145r = 36+r \Rightarrow 144r = 36 \Rightarrow r = \frac{36}{144} = \frac{1}{4}</math>. So <math>m + n = 1 + 4 = \boxed{5}</math> | + | Thus <math>145r = 36+r \Rightarrow 144r = 36 \Rightarrow r = \frac{36}{144} = \frac{1}{4}</math>. So <math>m + n = 1 + 4 = \boxed{5}</math>. |
== See also == | == See also == | ||
{{AIME box|year=2000|n=I|num-b=6|num-a=8}} | {{AIME box|year=2000|n=I|num-b=6|num-a=8}} | ||
+ | |||
+ | [[Category:Intermediate Algebra Problems]] |
Revision as of 17:14, 31 December 2007
Problem
Suppose that and are three positive numbers that satisfy the equations and Then where and are relatively prime positive integers. Find .
Solution
Let .
Thus . So .
See also
2000 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |