Difference between revisions of "1985 AHSME Problems/Problem 8"
Sevenoptimus (talk | contribs) (Improved wording, formatting, and LaTeX) |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Let <math> a, a', b, | + | Let <math>a,a',b,b'</math> be real numbers with <math>a</math> and <math>a'</math> nonzero. The solution to <math>ax+b=0</math> is less than the solution to <math>a'x+b'=0</math> if and only if |
− | <math> \mathrm{(A)\ } a'b<ab' \qquad \mathrm{(B) \ }ab'<a'b \qquad \mathrm{(C) \ } ab<a'b' \qquad \mathrm{(D) \ } \frac{b}{a}<\frac{b'}{a'} \qquad | + | <math> \mathrm{(A)\ } a'b < ab' \qquad \mathrm{(B) \ }ab' < a'b \qquad \mathrm{(C) \ } ab < a'b' \qquad \mathrm{(D) \ } \frac{b}{a} < \frac{b'}{a'} \qquad \mathrm{(E) \ }\frac{b'}{a'} < \frac{b}{a} </math> |
− | |||
− | |||
==Solution== | ==Solution== | ||
− | The solution to <math> ax+b=0 </math> is <math> \frac{-b}{a} </math> | + | The solution to <math>ax+b=0</math> is <math>x = \frac{-b}{a}</math>, while that to <math>a'x+b'=0</math> is <math>x = \frac{-b'}{a'}</math>. The first solution is less than the second precisely if <cmath>\frac{-b}{a} < \frac{-b'}{a'},</cmath> and multiplying this inequality by <math>-1</math> reversees the inequality sign, yielding <math>\boxed{\text{(E)} \ \frac{b'}{a'} < \frac{b}{a}}</math>. |
==See Also== | ==See Also== | ||
{{AHSME box|year=1985|num-b=7|num-a=9}} | {{AHSME box|year=1985|num-b=7|num-a=9}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 18:13, 19 March 2024
Problem
Let be real numbers with and nonzero. The solution to is less than the solution to if and only if
Solution
The solution to is , while that to is . The first solution is less than the second precisely if and multiplying this inequality by reversees the inequality sign, yielding .
See Also
1985 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.