Difference between revisions of "2024 AIME II Problems/Problem 8"
Prof joker (talk | contribs) |
|||
Line 1: | Line 1: | ||
Torus <math>T</math> is the surface produced by revolving a circle with radius 3 around an axis in the plane of the circle that is a distance 6 from the center of the circle (so like a donut). Let <math>S</math> be a sphere with a radius 11. When <math>T</math> rests on the outside of <math>S</math>, it is externally tangent to <math>S</math> along a circle with radius <math>r_i</math>, and when <math>T</math> rests on the outside of <math>S</math>, it is externally tangent to <math>S</math> along a circle with radius <math>r_o</math>. The difference <math>r_i-r_o</math> can be written as <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | Torus <math>T</math> is the surface produced by revolving a circle with radius 3 around an axis in the plane of the circle that is a distance 6 from the center of the circle (so like a donut). Let <math>S</math> be a sphere with a radius 11. When <math>T</math> rests on the outside of <math>S</math>, it is externally tangent to <math>S</math> along a circle with radius <math>r_i</math>, and when <math>T</math> rests on the outside of <math>S</math>, it is externally tangent to <math>S</math> along a circle with radius <math>r_o</math>. The difference <math>r_i-r_o</math> can be written as <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | ||
+ | ==Solution 1== | ||
+ | First, let's consider a section <math>\mathcal{P} </math> of the solids, along the axis. | ||
+ | By some 3D-Geomerty thinking, we can simply know that the axis crosses the sphere center. So, that is saying, the <math>\mathcal{P} </math> we took crosses one of the equator of the sphere. | ||
+ | Here I drew two graphs, the first one is the case when <math>T</math> is internally tangent to <math>S</math>, and the second one is when <math>T</math> is externally tangent to <math>S</math>. | ||
+ | |||
+ | <asy> | ||
+ | unitsize(0.5cm); | ||
+ | pair O = (0, 0); | ||
+ | real r1 = 11; | ||
+ | real r2 = 3; | ||
+ | draw(circle(O, r1)); | ||
+ | pair A = O + (0, -r1); | ||
+ | pair B = O + (0, r1); | ||
+ | draw(A--B); | ||
+ | pair C = O + (0, -1.25*r1); | ||
+ | pair D = O + (0, 1.25*r1); | ||
+ | draw(C--D, dashed); | ||
+ | dot(O); | ||
+ | pair E = (2 * r2, -sqrt((r1 - r2) * (r1 - r2) - 4 * r2 * r2)); | ||
+ | pair F = (0, -sqrt((r1 - r2) * (r1 - r2) - 4 * r2 * r2)); | ||
+ | pair G = (-r2 * O + r1 * E) / (r1 - r2); | ||
+ | pair H = (-r2 * O + r1 * F) / (r1 - r2); | ||
+ | draw(circle(E, r2)); | ||
+ | draw(circle((-2 * r2, -sqrt((r1 - r2) * (r1 - r2) - 4 * r2 * r2)), r2)); | ||
+ | draw(O--G, dashed); | ||
+ | draw(F--E, dashed); | ||
+ | draw(G--H, dashed); | ||
+ | label("<math>O</math>", O, SW); | ||
+ | label("<math>A</math>", A, SW); | ||
+ | label("<math>B</math>", B, NW); | ||
+ | label("<math>C</math>", C, NW); | ||
+ | label("<math>D</math>", D, SW); | ||
+ | label("<math>E_i</math>", E, NE); | ||
+ | label("<math>F_i</math>", F, W); | ||
+ | label("<math>G_i</math>", G, SE); | ||
+ | label("<math>H_i</math>", H, W); | ||
+ | label("<math>r_i</math>", 0.5 * H + 0.5 * G, NE); | ||
+ | label("<math>3</math>", 0.5 * E + 0.5 * G, NE); | ||
+ | label("<math>11</math>", 0.5 * O + 0.5 * G, NE); | ||
+ | <asy> | ||
+ | |||
+ | <asy> | ||
+ | unitsize(0.5cm); | ||
+ | pair O = (0, 0); | ||
+ | real r1 = 11; | ||
+ | real r2 = 3; | ||
+ | draw(circle(O, r1)); | ||
+ | pair A = O + (0, -r1); | ||
+ | pair B = O + (0, r1); | ||
+ | draw(A--B); | ||
+ | pair C = O + (0, -1.25*(r1 + r2)); | ||
+ | pair D = O + (0, 1.25*r1); | ||
+ | draw(C--D, dashed); | ||
+ | dot(O); | ||
+ | pair E = (2 * r2, -sqrt((r1 + r2) * (r1 + r2) - 4 * r2 * r2)); | ||
+ | pair F = (0, -sqrt((r1 + r2) * (r1 + r2) - 4 * r2 * r2)); | ||
+ | pair G = (r2 * O + r1 * E) / (r1 + r2); | ||
+ | pair H = (r2 * O + r1 * F) / (r1 + r2); | ||
+ | draw(circle(E, r2)); | ||
+ | draw(circle((-2 * r2, -sqrt((r1 + r2) * (r1 + r2) - 4 * r2 * r2)), r2)); | ||
+ | draw(O--E, dashed); | ||
+ | draw(F--E, dashed); | ||
+ | draw(G--H, dashed); | ||
+ | label("<math>O</math>", O, SW); | ||
+ | label("<math>A</math>", A, SW); | ||
+ | label("<math>B</math>", B, NW); | ||
+ | label("<math>C</math>", C, NW); | ||
+ | label("<math>D</math>", D, SW); | ||
+ | label("<math>E</math>", E, NE); | ||
+ | label("<math>F_o</math>", F, SW); | ||
+ | label("<math>G_o</math>", G, N); | ||
+ | label("<math>H_o</math>", H, W); | ||
+ | label("<math>r_o</math>", 0.5 * H + 0.5 * G, NE); | ||
+ | label("<math>3</math>", 0.5 * E + 0.5 * G, NE); | ||
+ | label("<math>11</math>", 0.5 * O + 0.5 * G, NE); | ||
+ | <asy> | ||
+ | |||
+ | For both graphs, point <math>O</math> is the center of sphere <math>S</math>, and points <math>A</math> and <math>B</math> are the intersections of the sphere and the axis. Point <math>E</math> (ignoring the subscripts) is one of the circle centers of the intersection of torus <math>T</math> with section <math>\mathcal{P} </math>. Point <math>G</math> (again, ignoring the subscripts) is one of the tangents between the torus <math>T</math> and sphere <math>S</math> on section <math>\mathcal{P} </math>. <math>EF\bot CD</math>, <math>HG\bot CD</math>. | ||
+ | |||
+ | And then, we can start our calculation. | ||
+ | |||
+ | In both cases, we know <math>\Delta OEF\sim \Delta OGH\Longrightarrow \frac{EF}{OE} =\frac{GH}{OG}</math>. | ||
+ | |||
+ | Hence, in the case of internal tangent, <math>\frac{E_iF_i}{OE_i} =\frac{G_iH_i}{OG_i}\Longrightarrow \frac{6}{11-3} =\frac{r_i}{11}\Longrightarrow r_i=\frac{33}{4} </math>. In the case of external tangent, <math>\frac{E_oF_o}{OE_o} =\frac{G_oH_o}{OG_o}\Longrightarrow \frac{6}{11+3} =\frac{r_o}{11}\Longrightarrow r_o=\frac{33}{7} </math>. | ||
+ | |||
+ | Thereby, <math>r_i-r_o=\frac{33}{4}-\frac{33}{7}=\frac{99}{28}</math>. And there goes the answer, <math>99+28=\boxed{\mathbf{127} }</math> | ||
+ | |||
+ | ~Prof_Joker | ||
Revision as of 10:41, 9 February 2024
Torus is the surface produced by revolving a circle with radius 3 around an axis in the plane of the circle that is a distance 6 from the center of the circle (so like a donut). Let be a sphere with a radius 11. When rests on the outside of , it is externally tangent to along a circle with radius , and when rests on the outside of , it is externally tangent to along a circle with radius . The difference can be written as , where and are relatively prime positive integers. Find .
Solution 1
First, let's consider a section of the solids, along the axis. By some 3D-Geomerty thinking, we can simply know that the axis crosses the sphere center. So, that is saying, the we took crosses one of the equator of the sphere.
Here I drew two graphs, the first one is the case when is internally tangent to , and the second one is when is externally tangent to .
<asy> unitsize(0.5cm); pair O = (0, 0); real r1 = 11; real r2 = 3; draw(circle(O, r1)); pair A = O + (0, -r1); pair B = O + (0, r1); draw(A--B); pair C = O + (0, -1.25*r1); pair D = O + (0, 1.25*r1); draw(C--D, dashed); dot(O); pair E = (2 * r2, -sqrt((r1 - r2) * (r1 - r2) - 4 * r2 * r2)); pair F = (0, -sqrt((r1 - r2) * (r1 - r2) - 4 * r2 * r2)); pair G = (-r2 * O + r1 * E) / (r1 - r2); pair H = (-r2 * O + r1 * F) / (r1 - r2); draw(circle(E, r2)); draw(circle((-2 * r2, -sqrt((r1 - r2) * (r1 - r2) - 4 * r2 * r2)), r2)); draw(O--G, dashed); draw(F--E, dashed); draw(G--H, dashed); label("", O, SW); label("", A, SW); label("", B, NW); label("", C, NW); label("", D, SW); label("", E, NE); label("", F, W); label("", G, SE); label("", H, W); label("", 0.5 * H + 0.5 * G, NE); label("", 0.5 * E + 0.5 * G, NE); label("", 0.5 * O + 0.5 * G, NE); <asy>
<asy> unitsize(0.5cm); pair O = (0, 0); real r1 = 11; real r2 = 3; draw(circle(O, r1)); pair A = O + (0, -r1); pair B = O + (0, r1); draw(A--B); pair C = O + (0, -1.25*(r1 + r2)); pair D = O + (0, 1.25*r1); draw(C--D, dashed); dot(O); pair E = (2 * r2, -sqrt((r1 + r2) * (r1 + r2) - 4 * r2 * r2)); pair F = (0, -sqrt((r1 + r2) * (r1 + r2) - 4 * r2 * r2)); pair G = (r2 * O + r1 * E) / (r1 + r2); pair H = (r2 * O + r1 * F) / (r1 + r2); draw(circle(E, r2)); draw(circle((-2 * r2, -sqrt((r1 + r2) * (r1 + r2) - 4 * r2 * r2)), r2)); draw(O--E, dashed); draw(F--E, dashed); draw(G--H, dashed); label("", O, SW); label("", A, SW); label("", B, NW); label("", C, NW); label("", D, SW); label("", E, NE); label("", F, SW); label("", G, N); label("", H, W); label("", 0.5 * H + 0.5 * G, NE); label("", 0.5 * E + 0.5 * G, NE); label("", 0.5 * O + 0.5 * G, NE); <asy>
For both graphs, point is the center of sphere , and points and are the intersections of the sphere and the axis. Point (ignoring the subscripts) is one of the circle centers of the intersection of torus with section . Point (again, ignoring the subscripts) is one of the tangents between the torus and sphere on section . , .
And then, we can start our calculation.
In both cases, we know .
Hence, in the case of internal tangent, . In the case of external tangent, .
Thereby, . And there goes the answer,
~Prof_Joker
See also
2024 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
[[Category:]] The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.