Difference between revisions of "2024 AMC 8 Problems/Problem 20"

(Problem)
(Problem)
Line 2: Line 2:
  
 
Any three vertices of the cube <math>PQRSTUVW</math>, shown in the figure below, can be connected to form a triangle. (For example, vertices <math>P</math>, <math>Q</math>, and <math>R</math> can be connected to form isosceles <math>\triangle PQR</math>.) How many of these triangles are equilateral and contain <math>P</math> as a vertex?
 
Any three vertices of the cube <math>PQRSTUVW</math>, shown in the figure below, can be connected to form a triangle. (For example, vertices <math>P</math>, <math>Q</math>, and <math>R</math> can be connected to form isosceles <math>\triangle PQR</math>.) How many of these triangles are equilateral and contain <math>P</math> as a vertex?
 +
 +
<asy>
 +
unitsize(4);
 +
pair P,Q,R,S,T,U,V,W;
 +
P=(0,30); Q=(30,30); R=(40,40); S=(10,40); T=(10,10); U=(40,10); V=(30,0); W=(0,0);
 +
draw(W--V); draw(V--Q); draw(Q--P); draw(P--W); draw(T--U); draw(U--R); draw(R--S); draw(S--T); draw(W--T); draw(P--S); draw(V--U); draw(Q--R);
 +
dot(P);
 +
dot(Q);
 +
dot(R);
 +
dot(S);
 +
dot(T);
 +
dot(U);
 +
dot(V);
 +
dot(W);
 +
label("$P$",P,NW);
 +
label("$Q$",Q,NW);
 +
label("$R$",R,NE);
 +
label("$S$",S,N);
 +
label("$T$",T,NE);
 +
label("$U$",U,NE);
 +
label("$V$",V,SE);
 +
label("$W$",W,SW);
 +
</asy>
  
 
<math>\textbf{(A)}0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }2 \qquad \textbf{(D) }3 \qquad \textbf{(E) }6</math>
 
<math>\textbf{(A)}0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }2 \qquad \textbf{(D) }3 \qquad \textbf{(E) }6</math>

Revision as of 12:32, 28 January 2024

Problem

Any three vertices of the cube $PQRSTUVW$, shown in the figure below, can be connected to form a triangle. (For example, vertices $P$, $Q$, and $R$ can be connected to form isosceles $\triangle PQR$.) How many of these triangles are equilateral and contain $P$ as a vertex?

[asy] unitsize(4); pair P,Q,R,S,T,U,V,W; P=(0,30); Q=(30,30); R=(40,40); S=(10,40); T=(10,10); U=(40,10); V=(30,0); W=(0,0); draw(W--V); draw(V--Q); draw(Q--P); draw(P--W); draw(T--U); draw(U--R); draw(R--S); draw(S--T); draw(W--T); draw(P--S); draw(V--U); draw(Q--R); dot(P); dot(Q); dot(R); dot(S); dot(T); dot(U); dot(V); dot(W); label("$P$",P,NW); label("$Q$",Q,NW); label("$R$",R,NE); label("$S$",S,N); label("$T$",T,NE); label("$U$",U,NE); label("$V$",V,SE); label("$W$",W,SW); [/asy]

$\textbf{(A)}0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }2 \qquad \textbf{(D) }3 \qquad \textbf{(E) }6$

Solution 1

The only equilateral triangles that can be formed are through the diagonals of the faces of the square with length $\sqrt{2}$. From P you have $3$ possible vertices that are possible to form a diagonal through one of the faces. So there are $3$ possible triangles. So the answer $\boxed{\textbf{(D) }3}$ ~Math 645

~andliu766

Video Solution by NiuniuMaths (Easy to understand!)

https://www.youtube.com/watch?v=V-xN8Njd_Lc

~NiuniuMaths

Video Solution by Power Solve

https://www.youtube.com/watch?v=7_reHSQhXv8

Video Solution 1 by Math-X (First understand the problem!!!)

https://youtu.be/N_9qlD9pgL0

~Math-X

Video Solution 2 by OmegaLearn.org

https://youtu.be/m1iXVOLNdlY

Video Solution 3 by SpreadTheMathLove

https://www.youtube.com/watch?v=Svibu3nKB7E

Video Solution by CosineMethod [🔥Fast and Easy🔥]

https://www.youtube.com/watch?v=Xg-1CWhraIM

See Also

2024 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png