Difference between revisions of "DVI exam"

(2022 221 problem 7)
(2022 221 problem 7)
Line 6: Line 6:
 
<i><b>Solution</b></i>
 
<i><b>Solution</b></i>
  
Let us consider the uniform triangular prism <math>ABCA'B'C'.</math> Let <math>M</math> be the midpoint of <math>AB, M'</math> be the midpoint of <math>A'B', K</math> be the midpoint of <math>CM, L</math> be the midpoint of <math>C'M'.</math>
+
Let us consider the uniform triangular prism <math>ABCA'B'C'.</math> Let <math>M</math> be the midpoint of <math>AB, M'</math> be the midpoint of <math>A'B', K</math> be the midpoint of <math>CM, L</math> be the midpoint of <math>C'M', 2 FG = AB.</math>
  
 
The area <math>[KED]</math> of <math>\triangle KED</math> in the sum with the areas of triangles <math>[KEL], [EDM'], [KDM]</math> is half the area of rectangle <math>CC'M'M,</math> so
 
The area <math>[KED]</math> of <math>\triangle KED</math> in the sum with the areas of triangles <math>[KEL], [EDM'], [KDM]</math> is half the area of rectangle <math>CC'M'M,</math> so
<cmath> \frac {[KED]}{[CC'M'M]} = \frac {1}{2} - \frac {1}{12}-\frac {1}{8} = \frac {5}{24}.</cmath>
+
<cmath> \frac {[KED]}{[CC'M'M]} = \frac {1}{2} - \frac {1}{12}- \frac {1}{12}-\frac {1}{8} = \frac {5}{24}.</cmath>
<cmath>FG \perp ED, 2 FG = AB.</cmath> Denote the distance between these lines <math>X.</math> The volume of the tetrahedron is <math>U = \frac {ED \cdot X \cdot FG}{6}.</math>
+
<cmath>FG \perp ED.</cmath> Denote the distance between these lines <math>h.</math> The volume of the tetrahedron is <math>U = \frac {ED \cdot h \cdot FG}{6}.</math>
<cmath>\frac {ED \cdot X}{2} = \frac {5}{24} \cdot CC' \cdot CM \implies U =\frac{5}{24 \cdot 3} \cdot CC' \cdot CM \cdot FG.</cmath>
+
<cmath>\frac {ED \cdot h}{2} = \frac {5}{24} \cdot CC' \cdot CM \implies U =\frac{5}{24 \cdot 3} \cdot CC' \cdot CM \cdot FG.</cmath>
The volume of the prism is <math>V = \frac{CM \cdot AB}{2} \cdot \frac{CC'}{3} = 72.</math>
+
The volume of the prism is <math>V = \frac{CM \cdot AB}{2} \cdot CC' =CC' \cdot CM \cdot FG  = 72.</math>
<cmath>\frac {U}{V} = \frac {\frac {5}{72} CC' \cdot CM \cdot FG}{\frac{1}{3} CM \cdot FG \cdot CC'} = \frac {5}{24} \implies U = 15.</cmath>
+
<cmath>\frac {U}{V} = \frac {\frac {5}{72} CC' \cdot CM \cdot FG}{CC' \cdot CM \cdot FG} = \frac {5}{24} \implies U = 5.</cmath>
  
 
An arbitrary prism is obtained from a regular one as a result of an affine transformation.
 
An arbitrary prism is obtained from a regular one as a result of an affine transformation.
Line 19: Line 19:
 
All points on the tetrahedron are defined affinely, which means that the volume ratio will be preserved.
 
All points on the tetrahedron are defined affinely, which means that the volume ratio will be preserved.
  
<i><b>Answer: 15.</b></i>
+
<i><b>Answer: 5.</b></i>
  
 
==2022 222 problem 7==
 
==2022 222 problem 7==

Revision as of 04:56, 28 January 2024

2022 221 problem 7

MSU 2022 7.png
MSU 2022 7a.png

The volume of a triangular prism $ABCA'B'C'$ with base $ABC$ and side edges $AA', BB', CC'$ is equal to $72.$ Find the volume of the tetrahedron $DEFG,$ where $D$ is the centroid of the face $ABC'A', E$ is the point of intersection of the medians of $\triangle A'B'C', F$ is the midpoint of the edge $AC$ and $G$ is the midpoint of the edge $BC.$

Solution

Let us consider the uniform triangular prism $ABCA'B'C'.$ Let $M$ be the midpoint of $AB, M'$ be the midpoint of $A'B', K$ be the midpoint of $CM, L$ be the midpoint of $C'M', 2 FG = AB.$

The area $[KED]$ of $\triangle KED$ in the sum with the areas of triangles $[KEL], [EDM'], [KDM]$ is half the area of rectangle $CC'M'M,$ so \[\frac {[KED]}{[CC'M'M]} = \frac {1}{2} - \frac {1}{12}- \frac {1}{12}-\frac {1}{8} = \frac {5}{24}.\] \[FG \perp ED.\] Denote the distance between these lines $h.$ The volume of the tetrahedron is $U = \frac {ED \cdot h \cdot FG}{6}.$ \[\frac {ED \cdot h}{2} = \frac {5}{24} \cdot CC' \cdot CM \implies U =\frac{5}{24 \cdot 3} \cdot CC' \cdot CM \cdot FG.\] The volume of the prism is $V = \frac{CM \cdot AB}{2} \cdot CC' =CC' \cdot CM \cdot FG  = 72.$ \[\frac {U}{V} = \frac {\frac {5}{72} CC' \cdot CM \cdot FG}{CC' \cdot CM \cdot FG} = \frac {5}{24} \implies U = 5.\]

An arbitrary prism is obtained from a regular one as a result of an affine transformation.

All points on the tetrahedron are defined affinely, which means that the volume ratio will be preserved.

Answer: 5.

2022 222 problem 7

MSU 2022 2 7.png

\[r = 0.5, h = 3/2, KM = \frac {\sqrt{3}}{2},\] \[AM = KM \cdot \tan \alpha, BM = \frac {KM}{\tan \alpha},\] \[AM + BM = AB \implies\] \[\tan \alpha + \frac {1}{\tan \alpha} = 2 \sqrt {2} \implies \tan \alpha = \sqrt {2} - 1 \implies \tan 2 \alpha = 1 \implies 2 \alpha = \frac {\pi}{4}.\]