Difference between revisions of "2024 AMC 8 Problems/Problem 20"

(Video Solution by Power Solve)
Line 12: Line 12:
 
~andliu766
 
~andliu766
  
 +
==Video Solution by NiuniuMaths (Easy to understand!)==
 +
https://www.youtube.com/watch?v=V-xN8Njd_Lc
 +
 +
~NiuniuMaths
 
==Video Solution by Power Solve==
 
==Video Solution by Power Solve==
 
https://www.youtube.com/watch?v=7_reHSQhXv8
 
https://www.youtube.com/watch?v=7_reHSQhXv8

Revision as of 01:12, 27 January 2024

Problem

Any three vertices of the cube $PQRSTUVW$, shown in the figure below, can be connected to form a triangle. (For example, vertices $P$, $Q$, and $R$ can be connected to form isosceles $\triangle PQR$.) How many of these triangles are equilateral and contain $P$ as a vertex?

$\textbf{(A)}0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }2 \qquad \textbf{(D) }3 \qquad \textbf{(E) }6$

Solution 1

The only equilateral triangles that can be formed are through the diagonals of the faces of the square with length $\sqrt{2}$. From P you have $3$ possible vertices that are possible to form a diagonal through one of the faces. So there are $3$ possible triangles. So the answer $\boxed{\textbf{(D) }3}$ ~Math 645

~andliu766

Video Solution by NiuniuMaths (Easy to understand!)

https://www.youtube.com/watch?v=V-xN8Njd_Lc

~NiuniuMaths

Video Solution by Power Solve

https://www.youtube.com/watch?v=7_reHSQhXv8

Video Solution 1 by Math-X (First understand the problem!!!)

https://youtu.be/N_9qlD9pgL0

~Math-X

Video Solution 2 by OmegaLearn.org

https://youtu.be/m1iXVOLNdlY

Video Solution 3 by SpreadTheMathLove

https://www.youtube.com/watch?v=Svibu3nKB7E

Video Solution by CosineMethod [🔥Fast and Easy🔥]

https://www.youtube.com/watch?v=Xg-1CWhraIM

See Also

2024 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png