Difference between revisions of "2020 AMC 8 Problems/Problem 15"

(Video Solution by Math-X (First understand the problem!!!))
 
(40 intermediate revisions by 21 users not shown)
Line 1: Line 1:
 +
==Problem==
 
Suppose <math>15\%</math> of <math>x</math> equals <math>20\%</math> of <math>y.</math> What percentage of <math>x</math> is <math>y?</math>
 
Suppose <math>15\%</math> of <math>x</math> equals <math>20\%</math> of <math>y.</math> What percentage of <math>x</math> is <math>y?</math>
  
Line 4: Line 5:
  
 
==Solution 1==
 
==Solution 1==
Multiply by <math>5</math> to get <math>75\% x=y</math>. Therefore, <math>\boxed{\textbf{C}}</math> is the answer.
+
Since <math>20\% = \frac{1}{5}</math>, multiplying the given condition by <math>5</math> shows that <math>y</math> is <math>15 \cdot 5 = \boxed{\textbf{(C) }75}</math> percent of <math>x</math>.
 +
 
 +
==Solution 2==
 +
Letting <math>x=100</math> (without loss of generality), the condition becomes <math>0.15\cdot 100 = 0.2\cdot y \Rightarrow 15 = \frac{y}{5} \Rightarrow y=75</math>. Clearly, it follows that <math>y</math> is <math>75\%</math> of <math>x</math>, so the answer is <math>\boxed{\textbf{(C) }75}</math>.
 +
 
 +
==Solution 3==
 +
We have <math>15\%=\frac{3}{20}</math> and <math>20\%=\frac{1}{5}</math>, so <math>\frac{3}{20}x=\frac{1}{5}y</math>. Solving for <math>y</math>, we multiply by <math>5</math> to give <math>y = \frac{15}{20}x = \frac{3}{4}x</math>, so the answer is <math>\boxed{\textbf{(C) }75}</math>.
 +
 
 +
==Solution 4==
 +
We are given <math>0.15x = 0.20y</math>, so we may assume without loss of generality that <math>x=20</math> and <math>y=15</math>. This means <math>\frac{y}{x}=\frac{15}{20}=\frac{75}{100}</math>, and thus the answer is <math>\boxed{\textbf{(C) }75}</math>.
 +
 
 +
==Solution 5==
 +
<math>15\%</math> of <math>x</math> is <math>0.15x</math>, and <math>20\%</math> of <math>y</math> is <math>0.20y</math>. We put <math>0.15x</math> and <math>0.20y</math> into an equation, creating <math>0.15x = 0.20y</math> because <math>0.15x</math> equals <math>0.20y</math>. Solving for <math>y</math>, dividing <math>0.2</math> to both sides, we get <math>y = \frac{15}{20}x = \frac{3}{4}x</math>, so the answer is <math>\boxed{\textbf{(C) }75}</math>.
 +
 
 +
==Solution 6==
 +
<math>15\%</math> of <math>x</math> can be written as <math>\frac{15}{100}x</math>, or <math>\frac{15x}{100}</math>. <math>20\%</math> of <math>y</math> can similarly be written as <math>\frac{20}{100}y</math>, or <math>\frac{20y}{100}</math>. So now, <math>\frac{15x}{100} = \frac{20y}{100}</math>. Using cross-multiplication, we can simplify the equation as: <math>1500x = 2000y</math>. Dividing both sides by <math>500</math>, we get: <math>3x = 4y</math>. <math>\frac{3}{4}</math> is the same thing as <math>75\%</math>, so the answer is <math>\boxed{\textbf{(C) }75}</math>.
 +
 
 +
==Video Solution by NiuniuMaths (Easy to understand!)==
 +
https://www.youtube.com/watch?v=bHNrBwwUCMI
 +
 
 +
~NiuniuMaths
 +
 
 +
==Video Solution by Math-X (First understand the problem!!!)==
 +
https://youtu.be/UnVo6jZ3Wnk?si=fRl03D9Q1KAdDtXz&t=2346
 +
 
 +
~Math-X
 +
 
 +
==Video Solution (🚀Very Fast🚀)==
 +
https://youtu.be/8LyGag4DOzo
 +
 
 +
~Education, the Study of Everything
 +
 
 +
==Video Solution==
 +
https://youtu.be/mjS-PHTw-GE
 +
 
 +
~savannahsolver
 +
 
 +
==Video Solution==
 +
https://youtu.be/xjwDsaRE_Wo
 +
 
 +
==Video Solution by Interstigation==
 +
https://youtu.be/YnwkBZTv5Fw?t=665
 +
 
 +
~Interstigation
 +
 
 +
==See also==
 +
{{AMC8 box|year=2020|num-b=14|num-a=16}}
 +
{{MAA Notice}}

Latest revision as of 15:34, 26 January 2024

Problem

Suppose $15\%$ of $x$ equals $20\%$ of $y.$ What percentage of $x$ is $y?$

$\textbf{(A) }5 \qquad \textbf{(B) }35 \qquad \textbf{(C) }75 \qquad \textbf{(D) }133 \frac13 \qquad \textbf{(E) }300$

Solution 1

Since $20\% = \frac{1}{5}$, multiplying the given condition by $5$ shows that $y$ is $15 \cdot 5 = \boxed{\textbf{(C) }75}$ percent of $x$.

Solution 2

Letting $x=100$ (without loss of generality), the condition becomes $0.15\cdot 100 = 0.2\cdot y \Rightarrow 15 = \frac{y}{5} \Rightarrow y=75$. Clearly, it follows that $y$ is $75\%$ of $x$, so the answer is $\boxed{\textbf{(C) }75}$.

Solution 3

We have $15\%=\frac{3}{20}$ and $20\%=\frac{1}{5}$, so $\frac{3}{20}x=\frac{1}{5}y$. Solving for $y$, we multiply by $5$ to give $y = \frac{15}{20}x = \frac{3}{4}x$, so the answer is $\boxed{\textbf{(C) }75}$.

Solution 4

We are given $0.15x = 0.20y$, so we may assume without loss of generality that $x=20$ and $y=15$. This means $\frac{y}{x}=\frac{15}{20}=\frac{75}{100}$, and thus the answer is $\boxed{\textbf{(C) }75}$.

Solution 5

$15\%$ of $x$ is $0.15x$, and $20\%$ of $y$ is $0.20y$. We put $0.15x$ and $0.20y$ into an equation, creating $0.15x = 0.20y$ because $0.15x$ equals $0.20y$. Solving for $y$, dividing $0.2$ to both sides, we get $y = \frac{15}{20}x = \frac{3}{4}x$, so the answer is $\boxed{\textbf{(C) }75}$.

Solution 6

$15\%$ of $x$ can be written as $\frac{15}{100}x$, or $\frac{15x}{100}$. $20\%$ of $y$ can similarly be written as $\frac{20}{100}y$, or $\frac{20y}{100}$. So now, $\frac{15x}{100} = \frac{20y}{100}$. Using cross-multiplication, we can simplify the equation as: $1500x = 2000y$. Dividing both sides by $500$, we get: $3x = 4y$. $\frac{3}{4}$ is the same thing as $75\%$, so the answer is $\boxed{\textbf{(C) }75}$.

Video Solution by NiuniuMaths (Easy to understand!)

https://www.youtube.com/watch?v=bHNrBwwUCMI

~NiuniuMaths

Video Solution by Math-X (First understand the problem!!!)

https://youtu.be/UnVo6jZ3Wnk?si=fRl03D9Q1KAdDtXz&t=2346

~Math-X

Video Solution (🚀Very Fast🚀)

https://youtu.be/8LyGag4DOzo

~Education, the Study of Everything

Video Solution

https://youtu.be/mjS-PHTw-GE

~savannahsolver

Video Solution

https://youtu.be/xjwDsaRE_Wo

Video Solution by Interstigation

https://youtu.be/YnwkBZTv5Fw?t=665

~Interstigation

See also

2020 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png