Difference between revisions of "1991 IMO Problems/Problem 5"
(→See Also) |
m (→Solution) |
||
(7 intermediate revisions by 2 users not shown) | |||
Line 2: | Line 2: | ||
Let <math> \,ABC\,</math> be a triangle and <math> \,P\,</math> an interior point of <math> \,ABC\,</math>. Show that at least one of the angles <math> \,\angle PAB,\;\angle PBC,\;\angle PCA\,</math> is less than or equal to <math> 30^{\circ }</math>. | Let <math> \,ABC\,</math> be a triangle and <math> \,P\,</math> an interior point of <math> \,ABC\,</math>. Show that at least one of the angles <math> \,\angle PAB,\;\angle PBC,\;\angle PCA\,</math> is less than or equal to <math> 30^{\circ }</math>. | ||
− | == Solution == | + | == Solution 1 == |
Let <math>A_{1}</math> , <math>A_{2}</math>, and <math>A_{3}</math> be <math>\angle CAB</math>, <math>\angle ABC</math>, <math>\angle BCA</math>, respectively. | Let <math>A_{1}</math> , <math>A_{2}</math>, and <math>A_{3}</math> be <math>\angle CAB</math>, <math>\angle ABC</math>, <math>\angle BCA</math>, respectively. | ||
Line 89: | Line 89: | ||
{{alternate solutions}} | {{alternate solutions}} | ||
+ | |||
+ | == Solution 2 == | ||
+ | |||
+ | At least one of <math>\angle ABC, \angle BCA, \angle CAB \ge 60^\circ</math>. Without loss of generality, assume that <math>\angle BCA \ge 60^\circ</math> | ||
+ | |||
+ | If <math>\angle PAB > 30^\circ</math> and <math>\angle PBC > 30^\circ</math> | ||
+ | |||
+ | Draw a circle <math>R</math> centered at <math>O</math> and passing through <math>A, P, B</math>. Since <math>P</math> is an interior point of <math>\triangle ABC</math>, thus <math>C</math> is outside the circle <math>R</math> | ||
+ | |||
+ | Draw two lines <math>CD, CE</math> passing through <math>C</math> and tangent to <math>R</math>. Line <math>CD</math> intersect <math>R</math> at <math>D</math>, and line <math>CE</math> intersect <math>R</math> at <math>E</math>. Choose <math>D</math> near <math>A</math>, and choose <math>E</math> near <math>B</math> | ||
+ | |||
+ | Extends line <math>BC</math>, and intersect <math>R</math> at <math>F</math> other than <math>B</math> when <math>BC</math> is not tangent to <math>R</math>. If <math>BC</math> is tangent to <math>R</math>, we have <math>B = E</math> be the tangent point, and simply let <math>F = B = E</math> | ||
+ | |||
+ | Draw the segment <math>OE</math>, and choose a point <math>G</math> on <math>R</math> such that <math>\angle GOE = 60^\circ</math>. There are two possible points, we choose <math>G</math> near point <math>P</math>. Draw segments <math>OG, GE</math>, thus <math>\triangle GOE</math> is an equilateral triangle | ||
+ | |||
+ | Draw segments <math>OP, OC, OB, OF, PB, GC</math> | ||
+ | |||
+ | <math>\angle OCE = \dfrac{1}{2} \angle DCE \ge \dfrac{1}{2} \angle BCA \ge 30^\circ</math>. Then we have <math>\angle COE = 90^\circ - \angle OCE \le 60^\circ = \angle GOE</math> | ||
+ | |||
+ | <math>\angle POB = 2 \angle PAB > 60^\circ, \angle POF = 2 \angle PBC > 60^\circ</math>, since we have either <math>\angle POE \ge \angle POB</math> or <math>\angle POE \ge \angle POF</math>, thus <math>\angle POE > 60^\circ = \angle GOE</math> | ||
+ | |||
+ | Thus we have <math>\angle COE \le \angle GOE < \angle POE</math>, then <math>\angle OCE \le \angle GCE < \angle PCE</math> | ||
+ | |||
+ | Because <math>\angle GCE \ge \angle OCE \ge 30^\circ = \angle GEC</math>, thus <math>GC \le GE = OG</math>, and <math>\angle GCO \ge \angle GOC</math> | ||
+ | |||
+ | Finally, <math>\angle PCA = \angle ACE - \angle PCE < \angle ACE - \angle GCE = \angle ACO - \angle GCO</math> | ||
+ | |||
+ | Since <math>\angle ACO \le \angle DCO</math>, and <math>\angle GCO \ge \angle GOC</math>, thus we have <math>\angle PCA < \angle ACO - \angle GCO \le \angle DCO - \angle GOC = 90^\circ - \angle COE - \angle GOC = 90^\circ - \angle GOE = 30^\circ</math> | ||
+ | |||
+ | We have proved that when <math>\angle PAB > 30^\circ</math> and <math>\angle PBC > 30^\circ</math>, the angle <math>\angle PCA</math> must be less than <math>30^\circ</math>. Thus at least one of <math>\angle PAB, \angle PBC, \angle PCA</math> should less than or equal to <math>30^\circ</math> | ||
+ | |||
+ | ~Joseph Tsai, mgtsai@gmail.com | ||
==See Also== | ==See Also== | ||
− | {{IMO box|year=1991|num-b=4| | + | {{IMO box|year=1991|num-b=4|num-a=6}} |
[[Category:Olympiad Geometry Problems]] | [[Category:Olympiad Geometry Problems]] | ||
− | [[Category: | + | [[Category:Geometry Problems]] |
Latest revision as of 04:01, 23 January 2024
Contents
Problem
Let be a triangle and an interior point of . Show that at least one of the angles is less than or equal to .
Solution 1
Let , , and be , , , respectively.
Let , , and be , , , respcetively.
Using law of sines on we get: , therefore,
Using law of sines on we get: , therefore,
Using law of sines on we get: , therefore,
Multiply all three equations we get:
Using AM-GM we get:
. [Inequality 1]
Note that for , decreases with increasing and fixed
Therefore, decreases with increasing and fixed
From trigonometric identity:
,
since , then:
Therefore,
and also,
Adding these two inequalities we get:
.
. [Inequality 2]
Combining [Inequality 1] and [Inequality 2] we see the following:
This implies that for at least one of the values of ,,or , the following is true:
or
Which means that for at least one of the values of ,,or , the following is true:
Therefore, at least one of the angles is less than or equal to .
~Tomas Diaz, orders@tomasdiaz.com
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
Solution 2
At least one of . Without loss of generality, assume that
If and
Draw a circle centered at and passing through . Since is an interior point of , thus is outside the circle
Draw two lines passing through and tangent to . Line intersect at , and line intersect at . Choose near , and choose near
Extends line , and intersect at other than when is not tangent to . If is tangent to , we have be the tangent point, and simply let
Draw the segment , and choose a point on such that . There are two possible points, we choose near point . Draw segments , thus is an equilateral triangle
Draw segments
. Then we have
, since we have either or , thus
Thus we have , then
Because , thus , and
Finally,
Since , and , thus we have
We have proved that when and , the angle must be less than . Thus at least one of should less than or equal to
~Joseph Tsai, mgtsai@gmail.com
See Also
1991 IMO (Problems) • Resources | ||
Preceded by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 6 |
All IMO Problems and Solutions |