Difference between revisions of "2011 AIME II Problems/Problem 5"

(Solution)
 
(One intermediate revision by one other user not shown)
Line 4: Line 4:
  
 
==Solution==
 
==Solution==
Since the sum of the first <math>2011</math> terms is <math>200</math>, and the sum of the fist <math>4022</math> terms is <math>380</math>, the sum of the second <math>2011</math> terms is <math>180</math>.
+
Since the sum of the first <math>2011</math> terms is <math>200</math>, and the sum of the first <math>4022</math> terms is <math>380</math>, the sum of the second <math>2011</math> terms is <math>180</math>.
 
This is decreasing from the first 2011, so the common ratio is less than one.
 
This is decreasing from the first 2011, so the common ratio is less than one.
  
Line 19: Line 19:
 
==Solution 3==
 
==Solution 3==
  
The sum of the first 2011 terms of the sequence is expressible as <math>a_1 + a_1r + a_1r^2 + a_1r^3</math> .... until <math>a_1r^{2010}</math>. The sum of the 2011 terms following the first 2011 is expressible as <math>a_1r^{2011} + a_1r^{2012} + a_1r^{2013}</math> .... until <math>a_1r^{4021}</math>. Notice that the latter sum of terms can be expressed as <math>(r^{2011})(a_1 + a_1r + a_1r^2 + a_1r^3...a_1r^{2010})</math>. We also know that the latter sum of terms can be obtained by subtracting 200 from 180, which then means that <math>r^{2011} = 9/10</math>. The terms from 4023 to 6033 can be expressed as <math>(r^{4022})(a_1 + a_1r + a_1r^2 + a_1r^3...a_1r^{2010})</math>, which is equivalent to <math>((9/10)^2)(200) = 162</math>. Adding 380 and 162 gives the answer of <math>\boxed{542}</math>.
+
The sum of the first 2011 terms of the sequence is expressible as <math>a_1 + a_1r + a_1r^2 + a_1r^3</math> .... until <math>a_1r^{2010}</math>. The sum of the 2011 terms following the first 2011 is expressible as <math>a_1r^{2011} + a_1r^{2012} + a_1r^{2013}</math> .... until <math>a_1r^{4021}</math>. Notice that the latter sum of terms can be expressed as <math>(r^{2011})(a_1 + a_1r + a_1r^2 + a_1r^3...a_1r^{2010})</math>. We also know that the latter sum of terms can be obtained by subtracting 200 from 380, which then means that <math>r^{2011} = 9/10</math>. The terms from 4023 to 6033 can be expressed as <math>(r^{4022})(a_1 + a_1r + a_1r^2 + a_1r^3...a_1r^{2010})</math>, which is equivalent to <math>((9/10)^2)(200) = 162</math>. Adding 380 and 162 gives the answer of <math>\boxed{542}</math>.
  
 
==Video Solution==
 
==Video Solution==

Latest revision as of 20:32, 20 January 2024

Problem

The sum of the first $2011$ terms of a geometric sequence is $200$. The sum of the first $4022$ terms is $380$. Find the sum of the first $6033$ terms.

Solution

Since the sum of the first $2011$ terms is $200$, and the sum of the first $4022$ terms is $380$, the sum of the second $2011$ terms is $180$. This is decreasing from the first 2011, so the common ratio is less than one.

Because it is a geometric sequence and the sum of the first 2011 terms is $200$, second $2011$ is $180$, the ratio of the second $2011$ terms to the first $2011$ terms is $\frac{9}{10}$. Following the same pattern, the sum of the third $2011$ terms is $\frac{9}{10}*180 = 162$.

Thus, $200+180+162=542$, so the sum of the first $6033$ terms is $\boxed{542}$.

Solution 2

Solution by e_power_pi_times_i

The sum of the first $2011$ terms can be written as $\dfrac{a_1(1-k^{2011})}{1-k}$, and the first $4022$ terms can be written as $\dfrac{a_1(1-k^{4022})}{1-k}$. Dividing these equations, we get $\dfrac{1-k^{2011}}{1-k^{4022}} = \dfrac{10}{19}$. Noticing that $k^{4022}$ is just the square of $k^{2011}$, we substitute $x = k^{2011}$, so $\dfrac{1}{x+1} = \dfrac{10}{19}$. That means that $k^{2011} = \dfrac{9}{10}$. Since the sum of the first $6033$ terms can be written as $\dfrac{a_1(1-k^{6033})}{1-k}$, dividing gives $\dfrac{1-k^{2011}}{1-k^{6033}}$. Since $k^{6033} = \dfrac{729}{1000}$, plugging all the values in gives $\boxed{542}$.

Solution 3

The sum of the first 2011 terms of the sequence is expressible as $a_1 + a_1r + a_1r^2 + a_1r^3$ .... until $a_1r^{2010}$. The sum of the 2011 terms following the first 2011 is expressible as $a_1r^{2011} + a_1r^{2012} + a_1r^{2013}$ .... until $a_1r^{4021}$. Notice that the latter sum of terms can be expressed as $(r^{2011})(a_1 + a_1r + a_1r^2 + a_1r^3...a_1r^{2010})$. We also know that the latter sum of terms can be obtained by subtracting 200 from 380, which then means that $r^{2011} = 9/10$. The terms from 4023 to 6033 can be expressed as $(r^{4022})(a_1 + a_1r + a_1r^2 + a_1r^3...a_1r^{2010})$, which is equivalent to $((9/10)^2)(200) = 162$. Adding 380 and 162 gives the answer of $\boxed{542}$.

Video Solution

https://www.youtube.com/watch?v=rpYphKOIKRs&t=186s ~anellipticcurveoverq

See also

2011 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png