Difference between revisions of "Lifting the Exponent"
Wescarroll (talk | contribs) m |
Wescarroll (talk | contribs) |
||
Line 1: | Line 1: | ||
− | ( | + | (Lemma from MAA official solution, 2020 AIME I Problems/Problem 12) |
Let <math>p</math> be an odd prime, and let <math>a</math> and <math>b</math> be integers relatively prime to <math>p</math> such that <math>p \mid (a-b)</math>. Let <math>n</math> be a positive integer. Then the number of factors of <math>p</math> that divide <math>a^n - b^n</math> is equal to the number of factors of <math>p</math> that divide <math>a-b</math> plus the number of factors of <math>p</math> that divide <math>n</math>. | Let <math>p</math> be an odd prime, and let <math>a</math> and <math>b</math> be integers relatively prime to <math>p</math> such that <math>p \mid (a-b)</math>. Let <math>n</math> be a positive integer. Then the number of factors of <math>p</math> that divide <math>a^n - b^n</math> is equal to the number of factors of <math>p</math> that divide <math>a-b</math> plus the number of factors of <math>p</math> that divide <math>n</math>. |
Revision as of 17:59, 18 January 2024
(Lemma from MAA official solution, 2020 AIME I Problems/Problem 12)
Let be an odd prime, and let and be integers relatively prime to such that . Let be a positive integer. Then the number of factors of that divide is equal to the number of factors of that divide plus the number of factors of that divide .