Difference between revisions of "2015 AMC 8 Problems/Problem 2"

(Video Solution (HOW TO THINK CRITICALLY!!!))
 
(21 intermediate revisions by 13 users not shown)
Line 1: Line 1:
 +
==Problem==
 +
 
Point <math>O</math> is the center of the regular octagon <math>ABCDEFGH</math>, and <math>X</math> is the midpoint of the side <math>\overline{AB}.</math> What fraction of the area of the octagon is shaded?
 
Point <math>O</math> is the center of the regular octagon <math>ABCDEFGH</math>, and <math>X</math> is the midpoint of the side <math>\overline{AB}.</math> What fraction of the area of the octagon is shaded?
  
Line 31: Line 33:
 
draw(E--O--X);
 
draw(E--O--X);
 
</asy>
 
</asy>
 +
==Solutions==
 +
===Solution 1===
 +
 +
Since octagon <math>ABCDEFGH</math> is a regular octagon, it is split into <math>8</math> equal parts, such as triangles <math>\bigtriangleup ABO, \bigtriangleup BCO, \bigtriangleup CDO</math>, etc.  These parts, since they are all equal, are <math>\frac{1}{8}</math> of the octagon each.  The shaded region consists of <math>3</math> of these equal parts plus half of another, so the fraction of the octagon that is shaded is <math>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{16}=\boxed{\textbf{(D) }\dfrac{7}{16}}.</math>
 +
 +
===Solution 2===
 +
<asy>
 +
pair A,B,C,D,E,F,G,H,O,X,a,b,c,d,e,f,g;
 +
A=dir(45);
 +
B=dir(90);
 +
C=dir(135);
 +
D=dir(180);
 +
E=dir(-135);
 +
F=dir(-90);
 +
G=dir(-45);
 +
H=dir(0);
 +
O=(0,0);
 +
X=midpoint(A--B);
 +
a=midpoint(B--C);
 +
b=midpoint(C--D);
 +
c=midpoint(D--E);
 +
d=midpoint(E--F);
 +
e=midpoint(F--G);
 +
f=midpoint(G--H);
 +
g=midpoint(H--A);
 +
 +
fill(X--B--C--D--E--O--cycle,rgb(0.75,0.75,0.75));
 +
draw(A--B--C--D--E--F--G--H--cycle);
 +
 +
dot("$A$",A,dir(45));
 +
dot("$B$",B,dir(90));
 +
dot("$C$",C,dir(135));
 +
dot("$D$",D,dir(180));
 +
dot("$E$",E,dir(-135));
 +
dot("$F$",F,dir(-90));
 +
dot("$G$",G,dir(-45));
 +
dot("$H$",H,dir(0));
 +
dot("$X$",X,dir(135/2));
 +
dot("$O$",O,dir(0));
 +
draw(E--O--X);
 +
draw(B--F);
 +
draw(A--O);
 +
draw(D--H);
 +
draw(C--G);
 +
draw(a--e);
 +
draw(b--f);
 +
draw(c--g);
 +
draw(d--O);
 +
</asy>
 +
 +
The octagon has been divided up into <math>16</math> identical triangles (and thus they each have equal area). Since the shaded region occupies <math>7</math> out of the <math>16</math> total triangles, the answer is <math>\boxed{\textbf{(D)}~\dfrac{7}{16}}</math>.
 +
 +
-Flare
 +
 +
===Solution 3===
 +
 +
For starters, what I find helpful is to divide the whole octagon up into triangles as shown here:
 +
<asy>
 +
pair A,B,C,D,E,F,G,H,O,X;
 +
A=dir(45);
 +
B=dir(90);
 +
C=dir(135);
 +
D=dir(180);
 +
E=dir(-135);
 +
F=dir(-90);
 +
G=dir(-45);
 +
H=dir(0);
 +
O=(0,0);
 +
X=midpoint(A--B);
 +
 +
fill(X--B--C--D--E--O--cycle,rgb(0.75,0.75,0.75));
 +
draw(A--B--C--D--E--F--G--H--cycle);
 +
 +
dot("$A$",A,dir(45));
 +
dot("$B$",B,dir(90));
 +
dot("$C$",C,dir(135));
 +
dot("$D$",D,dir(180));
 +
dot("$E$",E,dir(-135));
 +
dot("$F$",F,dir(-90));
 +
dot("$G$",G,dir(-45));
 +
dot("$H$",H,dir(0));
 +
dot("$X$",X,dir(135/2));
 +
dot("$O$",O,dir(0));
 +
draw(E--O--X);
 +
draw(C--O--B);
 +
draw(B--O--A);
 +
draw(A--O--H);
 +
draw(H--O--G);
 +
draw(G--O--F);
 +
draw(F--O--E);
 +
draw(E--O--D);
 +
draw(D--O--C);
 +
</asy>
 +
 +
Now, it is just a matter of counting the larger triangles. Remember that <math>\triangle BOX</math> and <math>\triangle XOA</math> are not full triangles and are only half for these purposes. We count it up and we get a total of <math>\frac{3.5}{8}</math> of the shape shaded. We then simplify it to get our answer of <math>\boxed{\textbf{(D)}~\frac{7}{16}}</math>.
 +
 +
== Solution 4 ==
 +
<asy>
 +
pair A,B,C,D,E,F,G,H,O,X;
 +
A=dir(45);
 +
B=dir(90);
 +
C=dir(135);
 +
D=dir(180);
 +
E=dir(-135);
 +
F=dir(-90);
 +
G=dir(-45);
 +
H=dir(0);
 +
O=(0,0);
 +
X=midpoint(A--B);
 +
 +
fill(X--B--C--D--E--O--cycle,rgb(0.75,0.75,0.75));
 +
draw(A--B--C--D--E--F--G--H--cycle);
 +
 +
dot("$A$",A,dir(45));
 +
dot("$B$",B,dir(90));
 +
dot("$C$",C,dir(135));
 +
dot("$D$",D,dir(180));
 +
dot("$E$",E,dir(-135));
 +
dot("$F$",F,dir(-90));
 +
dot("$G$",G,dir(-45));
 +
dot("$H$",H,dir(0));
 +
dot("$X$",X,dir(135/2));
 +
dot("$O$",O,dir(0));
 +
draw(E--O--X);
 +
draw(C--O--B);
 +
draw(B--O--A);
 +
draw(A--O--H);
 +
draw(H--O--G);
 +
draw(G--O--F);
 +
draw(F--O--E);
 +
draw(E--O--D);
 +
draw(D--O--C);
 +
</asy>
 +
 +
We can divide the octagon into 8 parts and pretend that the area is 64. We know that X is the midpoint of BA and that each space between two points is 8 because 64/8=8. This means that BX=4 because 8/2=4. Then, we add that to 3*8 because there are 3 spaces between points that are each 8. After that, you turn it into a fraction, 28/64, and simplify to get  <math>\boxed{\textbf{(D)}~\frac{7}{16}}</math>.
 +
 +
==Video Solution (HOW TO THINK CRITICALLY!!)==
 +
https://youtu.be/azFKEreETAw
 +
 +
~Education, the Study of Everything
 +
 +
==Video Solution==
 +
https://youtu.be/NbIav9YlPEY
 +
 +
~savannahsolver
 +
 +
==Video Solution by OmegaLearn==
 +
https://youtu.be/51K3uCzntWs?t=2314
 +
 +
~ pi_is_3.14
 +
 +
==See Also==
 +
 +
{{AMC8 box|year=2015|num-b=1|num-a=3}}
 +
{{MAA Notice}}

Latest revision as of 09:55, 14 January 2024

Problem

Point $O$ is the center of the regular octagon $ABCDEFGH$, and $X$ is the midpoint of the side $\overline{AB}.$ What fraction of the area of the octagon is shaded?

$\textbf{(A) }\frac{11}{32} \quad\textbf{(B) }\frac{3}{8} \quad\textbf{(C) }\frac{13}{32} \quad\textbf{(D) }\frac{7}{16}\quad \textbf{(E) }\frac{15}{32}$

[asy] pair A,B,C,D,E,F,G,H,O,X; A=dir(45); B=dir(90); C=dir(135); D=dir(180); E=dir(-135); F=dir(-90); G=dir(-45); H=dir(0); O=(0,0); X=midpoint(A--B);  fill(X--B--C--D--E--O--cycle,rgb(0.75,0.75,0.75)); draw(A--B--C--D--E--F--G--H--cycle);  dot("$A$",A,dir(45)); dot("$B$",B,dir(90)); dot("$C$",C,dir(135)); dot("$D$",D,dir(180)); dot("$E$",E,dir(-135)); dot("$F$",F,dir(-90)); dot("$G$",G,dir(-45)); dot("$H$",H,dir(0)); dot("$X$",X,dir(135/2)); dot("$O$",O,dir(0)); draw(E--O--X); [/asy]

Solutions

Solution 1

Since octagon $ABCDEFGH$ is a regular octagon, it is split into $8$ equal parts, such as triangles $\bigtriangleup ABO, \bigtriangleup BCO, \bigtriangleup CDO$, etc. These parts, since they are all equal, are $\frac{1}{8}$ of the octagon each. The shaded region consists of $3$ of these equal parts plus half of another, so the fraction of the octagon that is shaded is $\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{16}=\boxed{\textbf{(D) }\dfrac{7}{16}}.$

Solution 2

[asy] pair A,B,C,D,E,F,G,H,O,X,a,b,c,d,e,f,g; A=dir(45); B=dir(90); C=dir(135); D=dir(180); E=dir(-135); F=dir(-90); G=dir(-45); H=dir(0); O=(0,0); X=midpoint(A--B); a=midpoint(B--C); b=midpoint(C--D); c=midpoint(D--E); d=midpoint(E--F); e=midpoint(F--G); f=midpoint(G--H); g=midpoint(H--A);   fill(X--B--C--D--E--O--cycle,rgb(0.75,0.75,0.75)); draw(A--B--C--D--E--F--G--H--cycle);   dot("$A$",A,dir(45)); dot("$B$",B,dir(90)); dot("$C$",C,dir(135)); dot("$D$",D,dir(180)); dot("$E$",E,dir(-135)); dot("$F$",F,dir(-90)); dot("$G$",G,dir(-45)); dot("$H$",H,dir(0)); dot("$X$",X,dir(135/2)); dot("$O$",O,dir(0)); draw(E--O--X); draw(B--F); draw(A--O); draw(D--H); draw(C--G); draw(a--e); draw(b--f); draw(c--g); draw(d--O); [/asy]

The octagon has been divided up into $16$ identical triangles (and thus they each have equal area). Since the shaded region occupies $7$ out of the $16$ total triangles, the answer is $\boxed{\textbf{(D)}~\dfrac{7}{16}}$.

-Flare

Solution 3

For starters, what I find helpful is to divide the whole octagon up into triangles as shown here: [asy] pair A,B,C,D,E,F,G,H,O,X; A=dir(45); B=dir(90); C=dir(135); D=dir(180); E=dir(-135); F=dir(-90); G=dir(-45); H=dir(0); O=(0,0); X=midpoint(A--B);  fill(X--B--C--D--E--O--cycle,rgb(0.75,0.75,0.75)); draw(A--B--C--D--E--F--G--H--cycle);  dot("$A$",A,dir(45)); dot("$B$",B,dir(90)); dot("$C$",C,dir(135)); dot("$D$",D,dir(180)); dot("$E$",E,dir(-135)); dot("$F$",F,dir(-90)); dot("$G$",G,dir(-45)); dot("$H$",H,dir(0)); dot("$X$",X,dir(135/2)); dot("$O$",O,dir(0)); draw(E--O--X); draw(C--O--B); draw(B--O--A); draw(A--O--H); draw(H--O--G); draw(G--O--F); draw(F--O--E); draw(E--O--D); draw(D--O--C); [/asy]

Now, it is just a matter of counting the larger triangles. Remember that $\triangle BOX$ and $\triangle XOA$ are not full triangles and are only half for these purposes. We count it up and we get a total of $\frac{3.5}{8}$ of the shape shaded. We then simplify it to get our answer of $\boxed{\textbf{(D)}~\frac{7}{16}}$.

Solution 4

[asy] pair A,B,C,D,E,F,G,H,O,X; A=dir(45); B=dir(90); C=dir(135); D=dir(180); E=dir(-135); F=dir(-90); G=dir(-45); H=dir(0); O=(0,0); X=midpoint(A--B);  fill(X--B--C--D--E--O--cycle,rgb(0.75,0.75,0.75)); draw(A--B--C--D--E--F--G--H--cycle);  dot("$A$",A,dir(45)); dot("$B$",B,dir(90)); dot("$C$",C,dir(135)); dot("$D$",D,dir(180)); dot("$E$",E,dir(-135)); dot("$F$",F,dir(-90)); dot("$G$",G,dir(-45)); dot("$H$",H,dir(0)); dot("$X$",X,dir(135/2)); dot("$O$",O,dir(0)); draw(E--O--X); draw(C--O--B); draw(B--O--A); draw(A--O--H); draw(H--O--G); draw(G--O--F); draw(F--O--E); draw(E--O--D); draw(D--O--C); [/asy]

We can divide the octagon into 8 parts and pretend that the area is 64. We know that X is the midpoint of BA and that each space between two points is 8 because 64/8=8. This means that BX=4 because 8/2=4. Then, we add that to 3*8 because there are 3 spaces between points that are each 8. After that, you turn it into a fraction, 28/64, and simplify to get $\boxed{\textbf{(D)}~\frac{7}{16}}$.

Video Solution (HOW TO THINK CRITICALLY!!)

https://youtu.be/azFKEreETAw

~Education, the Study of Everything

Video Solution

https://youtu.be/NbIav9YlPEY

~savannahsolver

Video Solution by OmegaLearn

https://youtu.be/51K3uCzntWs?t=2314

~ pi_is_3.14

See Also

2015 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png