Difference between revisions of "1972 AHSME Problems/Problem 20"
Line 1: | Line 1: | ||
+ | == Problem 20 == | ||
+ | |||
+ | If <math>\tan x=\dfrac{2ab}{a^2-b^2}</math> where <math>a>b>0</math> and <math>0^\circ <x<90^\circ</math>, then <math>\sin x</math> is equal to | ||
+ | |||
+ | <math>\textbf{(A) }\frac{a}{b}\qquad | ||
+ | \textbf{(B) }\frac{b}{a}\qquad | ||
+ | \textbf{(C) }\frac{\sqrt{a^2-b^2}}{2a}\qquad | ||
+ | \textbf{(D) }\frac{\sqrt{a^2-b^2}}{2ab}\qquad | ||
+ | \textbf{(E) }\frac{2ab}{a^2+b^2} </math> | ||
+ | |||
+ | [[1972 AHSME Problems/Problem 20|Solution]] | ||
+ | |||
+ | ==Solution== | ||
+ | |||
We start by letting <math>\tan x = \frac{\sin x}{\cos x}</math> so that our equation is now: <cmath>\frac{\sin x}{\cos x} = \frac{2ab}{a^2-b^2}</cmath> Multiplying through and rearranging gives us the equation: <cmath>\cos x = \frac{a^2-b^2}{2ab} * \sin x</cmath> We now apply the Pythagorean identity <math>\sin ^2 x + \cos ^2 x =1</math>, using our substitution: <cmath>\left(\frac{a^2-b^2}{2ab} * \sin x \right)^2 + \sin ^2 x =1</cmath> We can isolate <math>\sin x</math> without worrying about division by <math>0</math> since <math>a \neq b \neq 0</math> our final answer is <math>(E) \frac{2ab}{a^2+b^2}</math> | We start by letting <math>\tan x = \frac{\sin x}{\cos x}</math> so that our equation is now: <cmath>\frac{\sin x}{\cos x} = \frac{2ab}{a^2-b^2}</cmath> Multiplying through and rearranging gives us the equation: <cmath>\cos x = \frac{a^2-b^2}{2ab} * \sin x</cmath> We now apply the Pythagorean identity <math>\sin ^2 x + \cos ^2 x =1</math>, using our substitution: <cmath>\left(\frac{a^2-b^2}{2ab} * \sin x \right)^2 + \sin ^2 x =1</cmath> We can isolate <math>\sin x</math> without worrying about division by <math>0</math> since <math>a \neq b \neq 0</math> our final answer is <math>(E) \frac{2ab}{a^2+b^2}</math> |
Latest revision as of 18:14, 2 January 2024
Problem 20
If where and , then is equal to
Solution
We start by letting so that our equation is now: Multiplying through and rearranging gives us the equation: We now apply the Pythagorean identity , using our substitution: We can isolate without worrying about division by since our final answer is