Difference between revisions of "2020 AIME II Problems/Problem 11"
(→See Also) |
|||
(One intermediate revision by one other user not shown) | |||
Line 50: | Line 50: | ||
~quacker88 | ~quacker88 | ||
− | ==Solution | + | ==Solution 3 (Official MAA)== |
Let the common root of <math>P+Q</math> and <math>P+R</math> be <math>p</math>, the common root of <math>P+Q</math> and <math>Q+R</math> be <math>q</math>, and the common root of <math>Q+R</math> and <math>P+R</math> be <math>r</math>. Because <math>p</math> and <math>q</math> are both roots of <math>P+Q</math> and <math>P+Q</math> has leading coefficient <math>2</math>, it follows that <math>P(x) + Q(x) = 2(x-p)(x-q).</math> Similarly, <math>P(x) + R(x) = 2(x-p)(x-r)</math> and <math>Q(x) + R(x) = 2(x-q)(x-r)</math>. Adding these three equations together and dividing by <math>2</math> yields<cmath>P(x) + Q(x) + R(x) = (x-p)(x-q) + (x-p)(x-r) + (x-q)(x-r),</cmath>so | Let the common root of <math>P+Q</math> and <math>P+R</math> be <math>p</math>, the common root of <math>P+Q</math> and <math>Q+R</math> be <math>q</math>, and the common root of <math>Q+R</math> and <math>P+R</math> be <math>r</math>. Because <math>p</math> and <math>q</math> are both roots of <math>P+Q</math> and <math>P+Q</math> has leading coefficient <math>2</math>, it follows that <math>P(x) + Q(x) = 2(x-p)(x-q).</math> Similarly, <math>P(x) + R(x) = 2(x-p)(x-r)</math> and <math>Q(x) + R(x) = 2(x-q)(x-r)</math>. Adding these three equations together and dividing by <math>2</math> yields<cmath>P(x) + Q(x) + R(x) = (x-p)(x-q) + (x-p)(x-r) + (x-q)(x-r),</cmath>so | ||
<cmath>P(x) = (P(x) + Q(x) + R(x)) - (Q(x) + R(x))</cmath> | <cmath>P(x) = (P(x) + Q(x) + R(x)) - (Q(x) + R(x))</cmath> | ||
Line 70: | Line 70: | ||
{{AIME box|year=2020|n=II|num-b=10|num-a=12}} | {{AIME box|year=2020|n=II|num-b=10|num-a=12}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
+ | |||
+ | [[Category:Intermediate Algebra Problems]] |
Revision as of 20:16, 28 December 2023
Contents
Problem
Let , and let
and
be two quadratic polynomials also with the coefficient of
equal to
. David computes each of the three sums
,
, and
and is surprised to find that each pair of these sums has a common root, and these three common roots are distinct. If
, then
, where
and
are relatively prime positive integers. Find
.
Solution 1
Let and
. We can write the following:
Let the common root of
be
;
be
; and
be
. We then have that the roots of
are
, the roots of
are
, and the roots of
are
.
By Vieta's, we have:
Subtracting from
, we get
. Adding this to
, we get
. This gives us that
from
. Substituting these values into
and
, we get
and
. Equating these values, we get
. Thus, our answer is
. ~ TopNotchMath
Solution 2
We know that .
Since , the constant term in
is
. Let
.
Finally, let .
. Let its roots be
and
.
Let its roots be
and
.
. Let its roots be
and
.
By vietas,
We could work out the system of equations, but it's pretty easy to see that .
~quacker88
Solution 3 (Official MAA)
Let the common root of and
be
, the common root of
and
be
, and the common root of
and
be
. Because
and
are both roots of
and
has leading coefficient
, it follows that
Similarly,
and
. Adding these three equations together and dividing by
yields
so
Similarly,
Comparing the
coefficients yields
, and comparing the constant coefficients yields
. The fact that
implies that
. Adding these two equations yields
, and so substituting back in to solve for
gives
. Finally,
The requested sum is
. Note that
and
.
Video Solution
https://youtu.be/BQlab3vjjxw ~ CNCM
Another one:
https://www.youtube.com/watch?v=AXN9x51KzNI
See Also
2020 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.