Difference between revisions of "2023 SSMO Accuracy Round Problems/Problem 6"
Rounak iitr (talk | contribs) (→Problem) |
Rounak iitr (talk | contribs) (→Solution) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 5: | Line 5: | ||
==Solution== | ==Solution== | ||
+ | By Vieta's relation we get, <cmath>\alpha+\beta+\gamma=2023=\sum_{cyc}{}\alpha^2=4092529.</cmath> <cmath>\alpha\beta+\beta\gamma+\gamma\alpha=0</cmath> <cmath>\alpha\beta\gamma=-(2023)^{2023} \implies \sum_{cyc}{}\alpha^3=8279186167-3(2023)^{2023}</cmath> Now we have to find the value of <cmath>\frac{\alpha^2+\beta^2}{\alpha+\beta}+\frac{\beta^2+\gamma^2}{\beta+\gamma}+\frac{\gamma^2+\alpha^2}{\gamma+\alpha}=\frac{4092529-\alpha^2}{2023-\alpha}+\frac{4092529-\beta^2}{2023-\beta}+\frac{4092529-\gamma^2}{2023-\gamma}</cmath> Therefore we get, <cmath>\frac{\sum_{cyc}{}(4092529-\alpha^2)(2023-\beta)(2023-\gamma)}{\prod_{cyc}{}(2023-\alpha)}</cmath> We get, <cmath>\frac{-\alpha\beta\gamma(\sum_{cyc}{}\alpha)+2023\sum_{cyc}{}\alpha^2(\beta+\gamma)-4092529(\sum_{cyc}{}\alpha^2)+4092529(\sum_{cyc}{}\alpha\beta)-8279186167(2(\sum_{cyc}{}\alpha))+50246380847523}{\prod_{cyc}{}(2023-\alpha)}</cmath> <cmath>\frac{4(2023)^{2024}}{2023^{2023}}\implies\boxed{8092.}</cmath> |
Latest revision as of 09:37, 24 December 2023
Problem
Let the roots of be . Find
Solution
By Vieta's relation we get, Now we have to find the value of Therefore we get, We get,