Difference between revisions of "1991 OIM Problems/Problem 4"

(Created page with "== Problem == Find a number <math>N</math> of five different and non-zero digits, which is equal to the sum of all the numbers of three different digits that can be formed wit...")
 
(See also)
 
(17 intermediate revisions by the same user not shown)
Line 5: Line 5:
  
 
== Solution ==
 
== Solution ==
{{solution}}
+
 
 +
Let <math>N=d_1d_2d_3d_4d_5</math> or in a better format: <math>N=10000d_1+1000d_2+100d_3+10d_4+d_5</math>
 +
 
 +
The total number of combinations is given the following way:
 +
 
 +
For the first digit of any three-digit number we have 5 numbers to chose from. 
 +
 
 +
For the second digit we have 4 numbers to chose from.
 +
 
 +
For the third digit we have 3 numbers to chose from.
 +
 
 +
Total numbers of three digit numbers is (5)(4)(3)=60.
 +
 
 +
Now we need to find their sum.
 +
 
 +
From all 60 ways, in the first digit we will have each digit of N showing with (4)(3)=12 configurations.
 +
 
 +
From all 60 ways, in the second digit we will have each digit of N showing with (4)(3)=12 configurations.
 +
 
 +
From all 60 ways, in the last digit we will have each digit of N showing with (4)(3)=12 configurations.
 +
 
 +
Therefore the sum, since each digit of <math>N</math> is shown in each position 12 times, then
 +
 
 +
<math>S=\left( 12\sum_{i=1}^{5}d_i \right)100+\left( 12\sum_{i=1}^{5}d_i \right)10+\left( 12\sum_{i=1}^{5}d_i \right)</math>
 +
 
 +
<math>S=1332 \sum_{i=1}^{5}d_i =N</math>
 +
 
 +
Since <math>12345\le N \le 98765</math>, then <math>15 \le \sum_{i=1}^{5}d_i \le 35</math>
 +
 
 +
<math>\begin{cases}
 +
(15)(1332)=19980\text{; } 1+9+9+8+0=27\text{; } 27\ne 15; & \text{NO}\\
 +
(16)(1332)=21312\text{; } 2+1+3+1+2=9\text{; } 9\ne 16; & \text{NO}\\
 +
(17)(1332)=22644\text{; } 2+2+6+4+4=18\text{; } 18\ne 17; & \text{NO}\\
 +
(18)(1332)=23976\text{; } 2+3+9+7+6=27\text{; } 27\ne 18; & \text{NO}\\
 +
(19)(1332)=25308\text{; } 2+5+3+0+8=18\text{; } 18\ne 19; & \text{NO}\\
 +
(20)(1332)=26640\text{; } 2+6+6+4+0=18\text{; } 18\ne 20; & \text{NO}\\
 +
(21)(1332)=27972\text{; } 2+7+9+7+2=27\text{; } 27\ne 21; & \text{NO}\\
 +
(22)(1332)=29304\text{; } 2+9+3+0+4=18\text{; } 18\ne 22; & \text{NO}\\
 +
(23)(1332)=30636\text{; } 3+0+6+3+6=18\text{; } 18\ne 23; & \text{NO}\\
 +
(24)(1332)=31968\text{; } 3+1+9+6+8=27\text{; } 27\ne 24; & \text{NO}\\
 +
(25)(1332)=33300\text{; } 3+3+3+0+0=9\text{; } 9\ne 25; & \text{NO}\\
 +
(26)(1332)=34632\text{; } 3+4+6+3+2=18\text{; } 18\ne 26; & \text{NO}\\
 +
(27)(1332)=35964\text{; } 3+5+9+6+4=27\text{; } 27=27; & \textbf{YES}\\
 +
(28)(1332)=37296\text{; } 3+7+2+9+6=27\text{; } 27\ne 28; & \text{NO}\\
 +
(29)(1332)=38628\text{; } 3+8+6+2+8=27\text{; } 27\ne 29; & \text{NO}\\
 +
(30)(1332)=39960\text{; } 3+9+9+6+0=27\text{; } 27\ne 30; & \text{NO}\\
 +
(31)(1332)=41292\text{; } 4+1+2+9+2=18\text{; } 18\ne 31; & \text{NO}\\
 +
(32)(1332)=42624\text{; } 4+2+6+2+4=18\text{; } 18\ne 32; & \text{NO}\\
 +
(33)(1332)=43956\text{; } 4+3+9+5+6=27\text{; } 27\ne 33; & \text{NO}\\
 +
(34)(1332)=45288\text{; } 4+5+2+8+8=27\text{; } 27\ne 34; & \text{NO}\\
 +
(35)(1332)=46620\text{; } 4+6+6+2+0=18\text{; } 18\ne 35; & \text{NO}
 +
\end{cases}</math>
 +
 
 +
The only case above is <math>(27)(1332)</math> which will give all different digits and the sum of the digits equal to the sum of all of the three-digit numbers.
 +
 
 +
Therefore, <math>\sum_{i=1}^{5}d_i=27</math> and <math>N=35964</math>
 +
 
 +
* Note.  I actually competed at this event in Argentina when I was in High School representing Puerto Rico.  At the competition, I messed up one of my calculations and multiplied all the numbers by 1331 instead of 1332.  So, I got partial points.
 +
 
 +
~Tomas Diaz. orders@tomasdiaz.com
 +
 
 +
{{alternate solutions}}
  
 
== See also ==
 
== See also ==
 +
 +
[[OIM Problems and Solutions]]
 +
 
https://www.oma.org.ar/enunciados/ibe6.htm
 
https://www.oma.org.ar/enunciados/ibe6.htm

Latest revision as of 08:40, 23 December 2023

Problem

Find a number $N$ of five different and non-zero digits, which is equal to the sum of all the numbers of three different digits that can be formed with five digits of $N$.

~translated into English by Tomas Diaz. ~orders@tomasdiaz.com

Solution

Let $N=d_1d_2d_3d_4d_5$ or in a better format: $N=10000d_1+1000d_2+100d_3+10d_4+d_5$

The total number of combinations is given the following way:

For the first digit of any three-digit number we have 5 numbers to chose from.

For the second digit we have 4 numbers to chose from.

For the third digit we have 3 numbers to chose from.

Total numbers of three digit numbers is (5)(4)(3)=60.

Now we need to find their sum.

From all 60 ways, in the first digit we will have each digit of N showing with (4)(3)=12 configurations.

From all 60 ways, in the second digit we will have each digit of N showing with (4)(3)=12 configurations.

From all 60 ways, in the last digit we will have each digit of N showing with (4)(3)=12 configurations.

Therefore the sum, since each digit of $N$ is shown in each position 12 times, then

$S=\left( 12\sum_{i=1}^{5}d_i \right)100+\left( 12\sum_{i=1}^{5}d_i \right)10+\left( 12\sum_{i=1}^{5}d_i \right)$

$S=1332 \sum_{i=1}^{5}d_i =N$

Since $12345\le N \le 98765$, then $15 \le \sum_{i=1}^{5}d_i \le 35$

$\begin{cases} (15)(1332)=19980\text{; } 1+9+9+8+0=27\text{; } 27\ne 15; & \text{NO}\\ (16)(1332)=21312\text{; } 2+1+3+1+2=9\text{; } 9\ne 16; & \text{NO}\\ (17)(1332)=22644\text{; } 2+2+6+4+4=18\text{; } 18\ne 17; & \text{NO}\\ (18)(1332)=23976\text{; } 2+3+9+7+6=27\text{; } 27\ne 18; & \text{NO}\\ (19)(1332)=25308\text{; } 2+5+3+0+8=18\text{; } 18\ne 19; & \text{NO}\\ (20)(1332)=26640\text{; } 2+6+6+4+0=18\text{; } 18\ne 20; & \text{NO}\\ (21)(1332)=27972\text{; } 2+7+9+7+2=27\text{; } 27\ne 21; & \text{NO}\\ (22)(1332)=29304\text{; } 2+9+3+0+4=18\text{; } 18\ne 22; & \text{NO}\\ (23)(1332)=30636\text{; } 3+0+6+3+6=18\text{; } 18\ne 23; & \text{NO}\\ (24)(1332)=31968\text{; } 3+1+9+6+8=27\text{; } 27\ne 24; & \text{NO}\\ (25)(1332)=33300\text{; } 3+3+3+0+0=9\text{; } 9\ne 25; & \text{NO}\\ (26)(1332)=34632\text{; } 3+4+6+3+2=18\text{; } 18\ne 26; & \text{NO}\\ (27)(1332)=35964\text{; } 3+5+9+6+4=27\text{; } 27=27; & \textbf{YES}\\ (28)(1332)=37296\text{; } 3+7+2+9+6=27\text{; } 27\ne 28; & \text{NO}\\ (29)(1332)=38628\text{; } 3+8+6+2+8=27\text{; } 27\ne 29; & \text{NO}\\ (30)(1332)=39960\text{; } 3+9+9+6+0=27\text{; } 27\ne 30; & \text{NO}\\ (31)(1332)=41292\text{; } 4+1+2+9+2=18\text{; } 18\ne 31; & \text{NO}\\ (32)(1332)=42624\text{; } 4+2+6+2+4=18\text{; } 18\ne 32; & \text{NO}\\ (33)(1332)=43956\text{; } 4+3+9+5+6=27\text{; } 27\ne 33; & \text{NO}\\ (34)(1332)=45288\text{; } 4+5+2+8+8=27\text{; } 27\ne 34; & \text{NO}\\ (35)(1332)=46620\text{; } 4+6+6+2+0=18\text{; } 18\ne 35; & \text{NO} \end{cases}$

The only case above is $(27)(1332)$ which will give all different digits and the sum of the digits equal to the sum of all of the three-digit numbers.

Therefore, $\sum_{i=1}^{5}d_i=27$ and $N=35964$

  • Note. I actually competed at this event in Argentina when I was in High School representing Puerto Rico. At the competition, I messed up one of my calculations and multiplied all the numbers by 1331 instead of 1332. So, I got partial points.

~Tomas Diaz. orders@tomasdiaz.com

Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.

See also

OIM Problems and Solutions

https://www.oma.org.ar/enunciados/ibe6.htm