ONLINE AMC 8 PREP WITH AOPS
Top scorers around the country use AoPS. Join training courses for beginners and advanced students.
VIEW CATALOG

Difference between revisions of "2019 AMC 8 Problems"

(Undo revision 208053 by Anniehyacinth (talk))
(Tag: Undo)
(Undo revision 208068 by Scrabbler94 (talk))
(Tag: Undo)
Line 362: Line 362:
 
[[2019 AMC 8 Problems/Problem 23|Solution]]
 
[[2019 AMC 8 Problems/Problem 23|Solution]]
  
== Problem 25: the triangle ==
+
== Problem 24: the triangle ==
 
Name the sum of the first 1000000 areas of squares in the Golden Ratio.
 
Name the sum of the first 1000000 areas of squares in the Golden Ratio.
  

Revision as of 19:01, 21 December 2023

2019 AMC 8 (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 1 point for each correct answer. There is no penalty for wrong answers.
  3. No aids are permitted other than plain scratch paper, writing utensils, ruler, and erasers. In particular, graph paper, compass, protractor, calculators, computers, smartwatches, and smartphones are not permitted. Rules
  4. Figures are not necessarily drawn to scale.
  5. You will have 40 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

addition

What is 5+3+4+6+7+_+6)*(&^_*__*&+&_)_*&&(_+? $\textbf{(A) }6\qquad\textbf{(B) }7\qquad\textbf{(C) }8\qquad\textbf{(D) }9\qquad\textbf{(E) }10$

x and y basics

A rectangle has measures of side lengths x and y. If the area is 5, how many values are there?


$\textbf{(A) }45\qquad\textbf{(B) }75\qquad\textbf{(C) }100\qquad\textbf{(D) }125\qquad\textbf{(E) }a lot$

3=

Which of the following is the correct order of the fractions $\frac{15}{11},\frac{19}{15},$ and $\frac{17}{13},$ from least to greatest?


$\textbf{(A) }\frac{15}{11}< \frac{17}{13}< \frac{19}{15}  \qquad\textbf{(B) }\frac{15}{11}< \frac{19}{15}<\frac{17}{13}    \qquad\textbf{(C) }\frac{17}{13}<\frac{19}{15}<\frac{15}{11}    \qquad\textbf{(D) } \frac{19}{15}<\frac{15}{11}<\frac{17}{13}   \qquad\textbf{(E) }   \frac{19}{15}<\frac{17}{13}<\frac{15}{11}$

Solution

Snakes and ladders

What is a probability that occurs when throwing 2 dice on a snake and ladders board, if there are 54 snakes and 4747 ladders?


$\textbf{(A) }60\qquad\textbf{(B) }90\qquad\textbf{(C) }105\qquad\textbf{(D) }120\qquad\textbf{(E) }144$

Solution

Problem 5

A tortoise challenges a hare to a race. The hare eagerly agrees and quickly runs ahead, leaving the slow-moving tortoise behind. Confident that he will win, the hare stops to take a nap. Meanwhile, the tortoise walks at a slow steady pace for the entire race. The hare awakes and runs to the finish line, only to find the tortoise already there. Which of the following graphs matches the description of the race, showing the distance $d$ traveled by the two animals over time $t$ from start to finish? [asy] unitsize(0.4 cm);  pair transx, transy; int i, j; int x, y;  transx = (13,0); transy = (0,-9);  for (i = 0; i <= 2; ++i) { for (j = 0; j <= 1; ++j) { if (i <= 1 || j <= 0) { for (x = 1; x <= 10; ++x) { draw(shift(i*transx + j*transy)*((x,0)--(x,5)),gray(0.7) + dashed); } for (y = 1; y <= 5; ++y) { draw(shift(i*transx + j*transy)*((0,y)--(10,y)),gray(0.7) + dashed); } draw(shift(i*transx + j*transy)*((0,0)--(11,0)),Arrow(6)); draw(shift(i*transx + j*transy)*((0,0)--(0,6)),Arrow(6)); label("time", (5,-0.5) + i*transx + j*transy); label(rotate(90)*"distance", (-0.5,2.5) + i*transx + j*transy); } }}  draw((0,0)--(1.5,2.5)--(7.5,2.5)--(9,5),linewidth(1.5*bp)); draw((0,0)--(10,5),linewidth(1.5*bp)); draw(shift(transx)*((0,0)--(2.5,2.5)--(7.5,2.5)--(10,5)),linewidth(1.5*bp)); draw(shift(transx)*((0,0)--(9,5)),linewidth(1.5*bp)); draw(shift(2*transx)*((0,0)--(2.5,3)--(7,2)--(10,5)),linewidth(1.5*bp)); draw(shift(2*transx)*((0,0)--(9,5)),linewidth(1.5*bp)); draw(shift(transy)*((0,0)--(2.5,2.5)--(6.5,2.5)--(9,5)),linewidth(1.5*bp)); draw(shift(transy)*((0,0)--(7.5,2)--(10,5)),linewidth(1.5*bp)); draw(shift(transx + transy)*((0,0)--(2.5,2)--(7.5,3)--(10,5)),linewidth(1.5*bp)); draw(shift(transx + transy)*((0,0)--(9,5)),linewidth(1.5*bp));  label("(A)", (-1,6)); label("(B)", (-1,6) + transx); label("(C)", (-1,6) + 2*transx); label("(D)", (-1,6) + transy); label("(E)", (-1,6) + transx + transy); [/asy]

Solution

Problem 6

There are $81$ grid points (uniformly spaced) in the square shown in the diagram below, including the points on the edges. Point $P$ is in the center of the square. Given that point $Q$ is randomly chosen among the other $80$ points, what is the probability that the line $PQ$ is a line of symmetry for the square?

[asy] draw((0,0)--(0,8)); draw((0,8)--(8,8)); draw((8,8)--(8,0)); draw((8,0)--(0,0)); dot((0,0)); dot((0,1)); dot((0,2)); dot((0,3)); dot((0,4)); dot((0,5)); dot((0,6)); dot((0,7)); dot((0,8));  dot((1,0)); dot((1,1)); dot((1,2)); dot((1,3)); dot((1,4)); dot((1,5)); dot((1,6)); dot((1,7)); dot((1,8));  dot((2,0)); dot((2,1)); dot((2,2)); dot((2,3)); dot((2,4)); dot((2,5)); dot((2,6)); dot((2,7)); dot((2,8));  dot((3,0)); dot((3,1)); dot((3,2)); dot((3,3)); dot((3,4)); dot((3,5)); dot((3,6)); dot((3,7)); dot((3,8));  dot((4,0)); dot((4,1)); dot((4,2)); dot((4,3)); dot((4,4)); dot((4,5)); dot((4,6)); dot((4,7)); dot((4,8));  dot((5,0)); dot((5,1)); dot((5,2)); dot((5,3)); dot((5,4)); dot((5,5)); dot((5,6)); dot((5,7)); dot((5,8));  dot((6,0)); dot((6,1)); dot((6,2)); dot((6,3)); dot((6,4)); dot((6,5)); dot((6,6)); dot((6,7)); dot((6,8));  dot((7,0)); dot((7,1)); dot((7,2)); dot((7,3)); dot((7,4)); dot((7,5)); dot((7,6)); dot((7,7)); dot((7,8));  dot((8,0)); dot((8,1)); dot((8,2)); dot((8,3)); dot((8,4)); dot((8,5)); dot((8,6)); dot((8,7)); dot((8,8)); label("P",(4,4),NE); [/asy]

$\textbf{(A) }\frac{1}{5}\qquad\textbf{(B) }\frac{1}{4} \qquad\textbf{(C) }\frac{2}{5} \qquad\textbf{(D) }\frac{9}{20} \qquad\textbf{(E) }\frac{1}{2}$

Solution

Problem 7

Shauna takes five tests, each worth a maximum of $100$ points. Her scores on the first three tests are $76$, $94$, and $87$. In order to average $81$ for all five tests, what is the lowest score she could earn on one of the other two tests?

$\textbf{(A) }48\qquad\textbf{(B) }52\qquad\textbf{(C) }66\qquad\textbf{(D) }70\qquad\textbf{(E) }74$

Solution

Problem 8

Gilda has a bag of marbles. She gives $20\%$ of them to her friend Pedro. Then Gilda gives $10\%$ of what is left to another friend, Ebony. Finally, Gilda gives $25\%$ of what is now left in the bag to her brother Jimmy. What percentage of her original bag of marbles does Gilda have left for herself?

$\textbf{(A) }20\qquad\textbf{(B) }33\frac{1}{3}\qquad\textbf{(C) }38\qquad\textbf{(D) }45\qquad\textbf{(E) }54$

Solution

Problem 9

Alex and Felicia each have cats as pets. Alex buys cat food in cylindrical cans that are $6$ cm in diameter and $12$ cm high. Felicia buys cat food in cylindrical cans that are $12$ cm in diameter and $6$ cm high. What is the ratio of the volume of one of Alex's cans to the volume one of Felicia's cans?

$\textbf{(A) }1:4\qquad\textbf{(B) }1:2\qquad\textbf{(C) }1:1\qquad\textbf{(D) }2:1\qquad\textbf{(E) }4:1$

Solution

Problem 10

The diagram shows the number of students at soccer practice each weekday during last week. After computing the mean and median values, Coach discovers that there were actually $21$ participants on Wednesday. Which of the following statements describes the change in the mean and median after the correction is made? [asy] unitsize(2mm); defaultpen(fontsize(8bp)); real d = 5; real t = 0.7; real r; int[] num = {20,26,16,22,16}; string[] days = {"Monday","Tuesday","Wednesday","Thursday","Friday"}; for (int i=0; i<30; i=i+2) { draw((i,0)--(i,-5*d),gray); }for (int i=0; i<5; ++i) {   r = -1*(i+0.5)*d; fill((0,r-t)--(0,r+t)--(num[i],r+t)--(num[i],r-t)--cycle,gray); label(days[i],(-1,r),W); }for(int i=0; i<32; i=i+4) { label(string(i),(i,1)); }label("Number of students at soccer practice",(14,3.5)); [/asy]

$\textbf{(A) }$ The mean increases by $1$ and the median does not change.

$\textbf{(B) }$ The mean increases by $1$ and the median increases by $1$.

$\textbf{(C) }$ The mean increases by $1$ and the median increases by $5$.

$\textbf{(D) }$ The mean increases by $5$ and the median increases by $1$.

$\textbf{(E) }$ The mean increases by $5$ and the median increases by $5$.

Solution

Each student takes a math class or a foreign language class or both. There are $70$ eighth graders taking a math class, and there are $54$ eight graders taking a foreign language class. How many eight graders take only a math class and not a foreign language class?

$\textbf{(A) }16\qquad\textbf{(B) }23\qquad\textbf{(C) }31\qquad\textbf{(D) }39\qquad\textbf{(E) }70$

Solution

Problem 12

unitsize(2 cm);

pair x, y, z, trans;
int i;

x = dir(-5);
y = (0.6,0.5);
z = (0,1);
trans = (2,0);

for (i = 0; i <= 2; ++i) {
draw(shift(i*trans)*((0,0)--x--(x + y)--(x + y + z)--(y + z)--z--cycle));
draw(shift(i*trans)*((x + z)--x));
draw(shift(i*trans)*((x + z)--(x + y + z)));
draw(shift(i*trans)*((x + z)--z));
}

label(rotate(-3)*"$R$", (x + z)/2);
label(rotate(-5)*slant(0.5)*"$B$", ((x + z) + (y + z))/2);
label(rotate(35)*slant(0.5)*"$G$", ((x + z) + (x + y))/2);

label(rotate(-3)*"$W$", (x + z)/2 + trans);
label(rotate(50)*slant(-1)*"$B$", ((x + z) + (y + z))/2 + trans);
label(rotate(35)*slant(0.5)*"$R$", ((x + z) + (x + y))/2 + trans);

label(rotate(-3)*"$P$", (x + z)/2 + 2*trans);
label(rotate(-5)*slant(0.5)*"$R$", ((x + z) + (y + z))/2 + 2*trans);
label(rotate(-85)*slant(-1)*"$G$", ((x + z) + (x + y))/2 + 2*trans);
 (Error making remote request. Unexpected URL sent back)

$\textbf{(A) }\text{red}\qquad\textbf{(B) }\text{white}\qquad\textbf{(C) }\text{green}\qquad\textbf{(D) }\text{brown}\qquad\textbf{(E) }\text{purple}$

Solution

Problem 13

A palindrome is a number that has the same value when read from left to right or from right to left. (For example, 12321 is a palindrome.) Let $N$ be the least three-digit integer which is not a palindrome but which is the sum of three distinct two-digit palindromes. What is the sum of the digits of $N$?

$\textbf{(A) }2\qquad\textbf{(B) }3\qquad\textbf{(C) }4\qquad\textbf{(D) }5\qquad\textbf{(E) }6$

Solution

Problem 14

Isabella has $6$ coupons that can be redeemed for free ice cream cones at Pete's Sweet Treats. In order to make the coupons last, she decides that she will redeem one every $10$ days until she has used them all. She knows that Pete's is closed on Sundays, but as she circles the $6$ dates on her calendar, she realizes that no circled date falls on a Sunday. On what day of the week does Isabella redeem her first coupon?

$\textbf{(A) }\text{Monday}\qquad\textbf{(B) }\text{Tuesday}\qquad\textbf{(C) }\text{Wednesday}\qquad\textbf{(D) }\text{Thursday}\qquad\textbf{(E) }\text{Friday}$

Solution

Problem 15

On a beach $50$ people are wearing sunglasses and $35$ people are wearing caps. Some people are wearing both sunglasses and caps. If one of the people wearing a cap is selected at random, the probability that this person is also wearing sunglasses is $\frac{2}{5}$. If instead, someone wearing sunglasses is selected at random, what is the probability that this person is also wearing a cap?

$\textbf{(A) }\frac{14}{85}\qquad\textbf{(B) }\frac{7}{25}\qquad\textbf{(C) }\frac{2}{5}\qquad\textbf{(D) }\frac{4}{7}\qquad\textbf{(E) }\frac{7}{10}$

Solution

Problem 16

Qiang drives $15$ miles at an average speed of $30$ miles per hour. How many additional miles will he have to drive at $55$ miles per hour to average $50$ miles per hour for the entire trip?

$\textbf{(A) }45\qquad\textbf{(B) }62\qquad\textbf{(C) }90\qquad\textbf{(D) }110\qquad\textbf{(E) }135$

Solution

Problem 17

What is the value of the product

\[\left(\frac{1\cdot3}{2\cdot2}\right)\left(\frac{2\cdot4}{3\cdot3}\right)\left(\frac{3\cdot5}{4\cdot4}\right)\cdots\left(\frac{97\cdot99}{98\cdot98}\right)\left(\frac{98\cdot100}{99\cdot99}\right)?\]

$\textbf{(A) }\frac{1}{2}\qquad\textbf{(B) }\frac{50}{99}\qquad\textbf{(C) }\frac{9800}{9801}\qquad\textbf{(D) }\frac{100}{99}\qquad\textbf{(E) }50$

Solution

Problem 18

The faces of each of two fair dice are numbered $1$, $2$, $3$, $5$, $7$, and $8$. When the two dice are tossed, what is the probability that their sum will be an even number?

$\textbf{(A) }\frac{4}{9}\qquad\textbf{(B) }\frac{1}{2}\qquad\textbf{(C) }\frac{5}{9}\qquad\textbf{(D) }\frac{3}{5}\qquad\textbf{(E) }\frac{2}{3}$

Solution

Problem 19

In a tournament there are six teams that play each other twice. A team earns $3$ points for a win, $1$ point for a draw, and $0$ points for a loss. After all the games have been played it turns out that the top three teams earned the same number of total points. What is the greatest possible number of total points for each of the top three teams?

$\textbf{(A) }22\qquad\textbf{(B) }23\qquad\textbf{(C) }24\qquad\textbf{(D) }26\qquad\textbf{(E) }30$

Solution

Problem 20

How many different real numbers $x$ satisfy the equation \[(x^{2}-5)^{2}=16?\]

$\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }4\qquad\textbf{(E) }8$

Solution

Problem 21

What is the area of the triangle formed by the lines $y=5$, $y=1+x$, and $y=1-x$?

$\textbf{(A) }4\qquad\textbf{(B) }8\qquad\textbf{(C) }10\qquad\textbf{(D) }12\qquad\textbf{(E) }16$

Solution

Problem 22

A store increased the original price of a shirt by a certain percent and then decreased the new price by the same amount. Given that the resulting price was $84\%$ of the original price, by what percent was the price increased and decreased?

$\textbf{(A) }16\qquad\textbf{(B) }20\qquad\textbf{(C) }28\qquad\textbf{(D) }36\qquad\textbf{(E) }40$

Solution

Problem 23 ghost problem

$\textbf{(A) }10\qquad\textbf{(B) }11\qquad\textbf{(C) }12\qquad\textbf{(D) }13\qquad\textbf{(E) }14$

Solution

Problem 24: the triangle

Name the sum of the first 1000000 areas of squares in the Golden Ratio.


$\textbf{(A) }24\qquad\textbf{(B) }30\qquad\textbf{(C) }32\qquad\textbf{(D) }36\qquad\textbf{(E) }40$

Solution

The Boss: Demolition crew: =

The demolition crew can destroy eighteen buildings with their invention, the wrecking ball thirty thousand. After destroying them in the mere of 3 seconds, the tractors need to come pick them up. The tractor moves at 5 miles/hour. Each tractor can carry 300 kg of materials over the long course of five hundred miles. While both events are happening, the cranes slowly construct the buildings at a rate of 15 buildings per hour. After the tractor collects the broken materials, it will return to the crane. The crane will continue constructing. A man is currently watching the team at work. If he started watching at 5:00 am on July 3rd, 2020, and finished watching on March 12th, 2024 (assuming he doesn't die), how many buildings would he have seen?

$\textbf{(A) }2848\qquad\textbf{(B) }114848\qquad\textbf{(C) }18485\qquad\textbf{(D) }2747\qquad\textbf{(E) }28484$

riot powshadowpsh nexus zzoink doggie blank ai michigun evw viprin xender game mulpan aethervernus snakevine aximos fresh salt lake andromeda cyclic space uk noctafly npesta sdslayer vortrox vision tride moldy ender bli