Difference between revisions of "2010 AMC 8 Problems/Problem 23"
(→Video Solution by OmegaLearn) |
|||
(32 intermediate revisions by 17 users not shown) | |||
Line 1: | Line 1: | ||
− | + | ==Problem== | |
− | import graph; size(7.5cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-6.27,xmax=10.01,ymin=-5.65,ymax=10.98; draw(circle((0,0),2)); draw((-3,0)--(3,0),EndArrow(6)); draw((0,-3)--(0,3),EndArrow(6)); draw(shift((0.01,1.42))*xscale(1.41)*yscale(1.41)*arc((0,0),1,179.76,359.76)); draw(shift((-0.01,-1.42))*xscale(1.41)*yscale(1.41)*arc((0,0),1,-0.38,179.62)); draw((-1.4,1.43)--(1.41,1.41)); draw((-1.42,-1.41)--(1.4,-1.42)); label(" | + | Semicircles <math>POQ</math> and <math>ROS</math> pass through the center <math>O</math>. What is the ratio of the combined areas of the two semicircles to the area of circle <math>O</math>? |
− | dot((0,0),ds); label(" | + | |
− | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | + | <asy> |
+ | import graph; size(7.5cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-6.27,xmax=10.01,ymin=-5.65,ymax=10.98; draw(circle((0,0),2)); draw((-3,0)--(3,0),EndArrow(6)); draw((0,-3)--(0,3),EndArrow(6)); draw(shift((0.01,1.42))*xscale(1.41)*yscale(1.41)*arc((0,0),1,179.76,359.76)); draw(shift((-0.01,-1.42))*xscale(1.41)*yscale(1.41)*arc((0,0),1,-0.38,179.62)); draw((-1.4,1.43)--(1.41,1.41)); draw((-1.42,-1.41)--(1.4,-1.42)); label("$ P(-1,1) $",(-2.57,2.17),SE*lsf); label("$ Q(1,1) $",(1.55,2.21),SE*lsf); label("$ R(-1,-1) $",(-2.72,-1.45),SE*lsf); label("$S(1,-1)$",(1.59,-1.49),SE*lsf); | ||
+ | dot((0,0),ds); label("$O$",(-0.24,-0.35),NE*lsf); dot((1.41,1.41),ds); dot((-1.4,1.43),ds); dot((1.4,-1.42),ds); dot((-1.42,-1.41),ds); | ||
+ | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);</asy> | ||
+ | |||
+ | <math> \textbf{(A)}\ \frac{\sqrt 2}{4}\qquad\textbf{(B)}\ \frac{1}{2}\qquad\textbf{(C)}\ \frac{2}{\pi}\qquad\textbf{(D)}\ \frac{2}{3}\qquad\textbf{(E)}\ \frac{\sqrt 2}{2} </math> | ||
+ | |||
+ | ==Solution== | ||
+ | By the Pythagorean Theorem, the radius of the larger circle turns out to be <math>\sqrt{1^2 + 1^2} = \sqrt{2}</math>. Therefore, the area of the larger circle is <math>(\sqrt{2})^2\pi = 2\pi </math>. Using the coordinate plane given, we find that the radius of each of the two semicircles to be 1. So, the area of the two semicircles is <math>1^2\pi=\pi</math>. Finally, the ratio of the combined areas of the two semicircles to the area of circle <math>O</math> is <math>\boxed{\textbf{(B)}\ \frac{1}{2}}</math>. | ||
+ | |||
+ | ==Video Solution by OmegaLearn== | ||
+ | https://youtu.be/abSgjn4Qs34?t=903 | ||
+ | |||
+ | ~ pi_is_3.14 | ||
+ | |||
+ | ==Video Solution by MathTalks== | ||
+ | |||
+ | https://youtu.be/mSCQzmfdX-g | ||
+ | |||
+ | ==Video Solution by WhyMath== | ||
+ | https://youtu.be/yBpbVpoVUXI | ||
+ | |||
+ | ~savannahsolver | ||
+ | |||
+ | ==See Also== | ||
+ | {{AMC8 box|year=2010|num-b=22|num-a=24}} | ||
+ | {{MAA Notice}} |
Latest revision as of 23:29, 17 December 2023
Contents
Problem
Semicircles and pass through the center . What is the ratio of the combined areas of the two semicircles to the area of circle ?
Solution
By the Pythagorean Theorem, the radius of the larger circle turns out to be . Therefore, the area of the larger circle is . Using the coordinate plane given, we find that the radius of each of the two semicircles to be 1. So, the area of the two semicircles is . Finally, the ratio of the combined areas of the two semicircles to the area of circle is .
Video Solution by OmegaLearn
https://youtu.be/abSgjn4Qs34?t=903
~ pi_is_3.14
Video Solution by MathTalks
Video Solution by WhyMath
~savannahsolver
See Also
2010 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.