Difference between revisions of "1967 AHSME Problems/Problem 32"
(→Solution) |
(→Solution 3 (Law of Cosines Cheese)) |
||
(23 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
− | == Problem == | + | ==Problem== |
− | |||
− | <math>\textbf{(A)}\ 9\qquad | + | In quadrilateral <math>ABCD</math> with diagonals <math>AC</math> and <math>BD</math>, intersecting at <math>O</math>, <math>BO=4</math>, <math>OD = 6</math>, <math>AO=8</math>, <math>OC=3</math>, and <math>AB=6</math>. The length of <math>AD</math> is: |
− | \textbf{(B)}\ 10\qquad | + | <math>\textbf{(A)}\ 9\qquad \textbf{(B)}\ 10\qquad \textbf{(C)}\ 6\sqrt{3}\qquad \textbf{(D)}\ 8\sqrt{2}\qquad \textbf{(E)}\ \sqrt{166}</math> |
− | \textbf{(C)}\ 6\sqrt{3}\qquad | ||
− | \textbf{(D)}\ 8\sqrt{2}\qquad | ||
− | \textbf{(E)}\ \sqrt{166}</math> | ||
− | == Solution == | + | ==Solution 1== |
− | + | ||
+ | After drawing the diagram, we see that we actually have a lot of lengths to work with. Considering triangle ABD, we know values of <math>AB, BD(BD = BO + OD)</math>, but we want to find the value of <math>AD</math>. We can apply stewart's theorem now, letting <math>m = 4, n = 6, AD = X, AB = 6</math>, and we have <math>10 \cdot 6 \cdot 4 + 8 \cdot 8 \cdot 10 = x^2 + 36 \cdot 6</math>, and we see that <math>x = \boxed{\textbf{(E)}~\sqrt{166}}</math> | ||
+ | |||
+ | ==Solution 2== | ||
+ | |||
+ | <asy> | ||
+ | /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ | ||
+ | import graph; size(5cm); | ||
+ | real labelscalefactor = 0.5; /* changes label-to-point distance */ | ||
+ | pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ | ||
+ | pen dotstyle = black; /* point style */ | ||
+ | real xmin = -9.78, xmax = 9.78, ymin = -5.72, ymax = 5.72; /* image dimensions */ | ||
+ | |||
+ | |||
+ | draw((-1,4)--(-4.08,3.78)--(-3.1,-3.42)--(1.56,-0.22)--cycle, linewidth(2)); | ||
+ | /* draw figures */ | ||
+ | draw((-1,4)--(-4.08,3.78), linewidth(2)); | ||
+ | draw((-4.08,3.78)--(-3.1,-3.42), linewidth(2)); | ||
+ | draw((-3.1,-3.42)--(1.56,-0.22), linewidth(2)); | ||
+ | draw((1.56,-0.22)--(-1,4), linewidth(2)); | ||
+ | draw(circle((-2.287661623108666,0.35726272352132055), 3.863626188061437), linewidth(2)); | ||
+ | draw((-1,4)--(-3.1,-3.42), linewidth(2)); | ||
+ | draw((-4.08,3.78)--(1.56,-0.22), linewidth(2)); | ||
+ | /* dots and labels */ | ||
+ | dot((-1,4),dotstyle); | ||
+ | label("$A$", (-0.92,4.2), NE * labelscalefactor); | ||
+ | dot((-4.08,3.78),dotstyle); | ||
+ | label("$B$", (-4.42,4), NE * labelscalefactor); | ||
+ | dot((-3.1,-3.42),dotstyle); | ||
+ | label("$C$", (-3.4,-3.94), NE * labelscalefactor); | ||
+ | dot((1.56,-0.22),dotstyle); | ||
+ | label("$D$", (1.8,-0.4), NE * labelscalefactor); | ||
+ | dot((-1.566733533935139,1.9975415134291763),linewidth(4pt) + dotstyle); | ||
+ | label("$O$", (-1.34,1.98), NE * labelscalefactor); | ||
+ | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | ||
+ | /* end of picture */ | ||
+ | </asy> | ||
+ | (Diagram not to scale) | ||
+ | |||
+ | Since <math>AO \cdot OC = BO \cdot OD</math>, <math>ABCD</math> is cyclic through power of a point. From the given information, we see that <math>\triangle{AOB}\sim \triangle{DOC}</math> and <math>\triangle{BOC} \sim \triangle{AOD}</math>. Hence, we can find <math>CD=\frac{9}{2}</math> and <math>AD=2 \cdot BC</math>. Letting <math>BC</math> be <math>x</math>, we can use Ptolemy's to get | ||
+ | <cmath>6 \cdot \frac{9}{2} + 2x^2=10 \cdot 11 \implies x=\sqrt{\frac{83}{2}}</cmath> | ||
+ | Since we are solving for <math>AD=2x=2\cdot\sqrt{\frac{83}{2}}=\sqrt{4\cdot\frac{83}{2}} = \boxed{\textbf{(E)}~\sqrt{166}}</math> | ||
+ | |||
+ | - PhunsukhWangdu | ||
+ | |||
+ | ==Solution 3 (Law of Cosines Cheese)== | ||
+ | The solution says it all. Since <math>\angle AOD</math> is supplementary to <math>\angle AOB</math>, <math>cos(\angle AOD) = cos(180^{\circ} - \angle AOB)=-cos(\angle AOB) </math>. The law of cosines on <math>\triangle AOB</math> gives us <math>cos(\angle AOB)=\frac {8^2+4^2-6^2}{(2)(8)(4)}=\frac {11}{16}</math>. Again, we can use the law of cosines on <math>\triangle AOD</math>, which gives us | ||
+ | <cmath>AD=\sqrt {8^2+6^2-2(8)(6)cos(\angle AOD)}</cmath> | ||
+ | <cmath>=\sqrt {8^2+6^2-(2)(8)(6)cos(\angle 180^{\circ} - AOB)}</cmath> | ||
+ | <cmath>=\sqrt {8^2+6^2+(2)(8)(6)cos(\angle AOB)}</cmath> | ||
+ | <cmath>=\sqrt {8^2+6^2+(2)(8)(6)(\frac {11}{16})}</cmath> | ||
+ | <cmath>=\sqrt{166}</cmath> | ||
+ | which gives us <math>\boxed{\textbf{(E)}~\sqrt{166}}</math> | ||
+ | |||
+ | Note that this solution works even if the quadrilateral is not cyclic, and in general, it works if an angle's supplement is known. (Anyone come from aops volume 2 lmao.) | ||
+ | |||
+ | -Wesssslili | ||
== See also == | == See also == | ||
− | {{AHSME box|year=1967|num-b=31|num-a=33}} | + | {{AHSME 40p box|year=1967|num-b=31|num-a=33}} |
− | [[Category:Intermediate Geometry Problems]] | + | [[Category: Intermediate Geometry Problems]] |
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 17:56, 17 December 2023
Problem
In quadrilateral with diagonals and , intersecting at , , , , , and . The length of is:
Solution 1
After drawing the diagram, we see that we actually have a lot of lengths to work with. Considering triangle ABD, we know values of , but we want to find the value of . We can apply stewart's theorem now, letting , and we have , and we see that
Solution 2
(Diagram not to scale)
Since , is cyclic through power of a point. From the given information, we see that and . Hence, we can find and . Letting be , we can use Ptolemy's to get Since we are solving for
- PhunsukhWangdu
Solution 3 (Law of Cosines Cheese)
The solution says it all. Since is supplementary to , . The law of cosines on gives us . Again, we can use the law of cosines on , which gives us which gives us
Note that this solution works even if the quadrilateral is not cyclic, and in general, it works if an angle's supplement is known. (Anyone come from aops volume 2 lmao.)
-Wesssslili
See also
1967 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 31 |
Followed by Problem 33 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.