Difference between revisions of "1992 OIM Problems/Problem 1"
Line 7: | Line 7: | ||
<math>a_n=\frac{n(n+1)}{2}\text{ mod } 10</math> | <math>a_n=\frac{n(n+1)}{2}\text{ mod } 10</math> | ||
+ | |||
+ | Let <math>k</math> and <math>p</math> be integers with <math>k \ge 0</math>, and <math>1 \le p \le 20</math> | ||
+ | |||
+ | <math>a_{20k+p}=\frac{(20k+p)(20k+p+1)}{2}\text{ mod } 10</math> | ||
+ | |||
+ | <math>a_{20k+p}=\frac{20k^2+20k(p+1)+20kp+p(p+1)}{2}\text{ mod } 10</math> | ||
+ | |||
+ | |||
Let <math>S_n=a_1 + a_2 + a_3 + \cdots + a_n</math> | Let <math>S_n=a_1 + a_2 + a_3 + \cdots + a_n</math> | ||
− | + | ||
{{alternate solutions}} | {{alternate solutions}} |
Revision as of 23:26, 13 December 2023
Problem
For each positive integer , let be the last digit of the number. . Calculate .
~translated into English by Tomas Diaz. ~orders@tomasdiaz.com
Solution
Let and be integers with , and
Let
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.