|
|
(3 intermediate revisions by 3 users not shown) |
Line 1: |
Line 1: |
− | ==Problem==
| + | #REDIRECT [[2004 AMC 12A Problems/Problem 17]] |
− | Let <math>a_1,a_2,\cdots</math>, be a sequence with the following properties.
| |
− | | |
− | (i) <math>a_1=1</math>, and
| |
− | | |
− | (ii) <math>a_{2n}=n\cdot a_n</math> for any positive integer <math>n</math>.
| |
− | | |
− | What is the value of <math>a_{2^{100}}</math>?
| |
− | | |
− | <math> \mathrm{(A) \ } 1 \qquad \mathrm{(B) \ } 2^{99} \qquad \mathrm{(C) \ } 2^{100} \qquad \mathrm{(D) \ } 2^{4050} \qquad \mathrm{(E) \ } 2^{9999} </math>
| |
− | | |
− | ==Solution==
| |
− | Note that
| |
− | | |
− | <math>a_2=2a_1</math>
| |
− | | |
− | <math>a_{2^2}=2\cdot a_2=2\cdot1=2</math>
| |
− | | |
− | <math>a_{2^3}=4\cdot a_4=2^3\cdot2^{2+1}</math>
| |
− | | |
− | <math>a_{2^8}=8\cdot a_8=2^3\cdot</math>
| |
− | | |
− | //The following is written by Dale Black -- Not Validated
| |
− | I think it should be <math>2^{4950}</math>
| |
− | | |
− | <math>a_{2^{100}}=2^{99}\cdot2^{98}\cdot...\cdot2^1\cdot1=2^{(1+99)\cdot99/2}=2^{99\cdot50}=2^{4950}</math>
| |