Difference between revisions of "2004 AMC 10A Problems/Problem 24"

m (NOT COMPLETE!!! (will finish later))
 
 
(4 intermediate revisions by 4 users not shown)
Line 1: Line 1:
==Problem==
+
#REDIRECT [[2004 AMC 12A Problems/Problem 17]]
Let <math>a_1,a_2,\cdots</math>, be a sequence with the following properties.
 
 
 
    (i)  <math>a_1=1</math>, and
 
 
 
    (ii)  <math>a_{2n}=n\cdot a_n</math> for any positive integer <math>n</math>.
 
 
 
What is the value of <math>a_{2^{100}}</math>?
 
 
 
<math> \mathrm{(A) \ } 1 \qquad \mathrm{(B) \ } 2^{99} \qquad \mathrm{(C) \ } 2^{100} \qquad \mathrm{(D) \ } 2^{4050} \qquad \mathrm{(E) \ } 2^{9999}  </math>
 
 
 
==Solution==
 
Note that
 
 
 
<math>a_2=2a_1</math>
 
 
 
<math>a_{2^2}=2\cdot a_2=2\cdot1=2</math>
 
 
 
<math>a_{2^3}=4\cdot a_4=2^3\cdot2^{2+1}</math>
 
 
 
<math>a_{2^8}=8\cdot a_8=2^3\cdot</math>
 

Latest revision as of 15:11, 5 December 2007