Difference between revisions of "1985 OIM Problems/Problem 3"

(Problem)
Line 4: Line 4:
 
knowing that they're all real, positives and that:
 
knowing that they're all real, positives and that:
 
<cmath>\frac{r_1}{2}+\frac{r_2}{4}+\frac{r_3}{5}+\frac{r_4}{8}=1</cmath>
 
<cmath>\frac{r_1}{2}+\frac{r_2}{4}+\frac{r_3}{5}+\frac{r_4}{8}=1</cmath>
 +
 +
~translated into English by Tomas Diaz. ~orders@tomasdiaz.com
  
 
== Solution ==
 
== Solution ==
 
{{solution}}
 
{{solution}}
 +
 +
== See also ==
 +
https://www.oma.org.ar/enunciados/ibe1.htm

Revision as of 12:25, 13 December 2023

Problem

Find the roots $r_1$, $r_2$, $r_3$, and $r_4$ of the equation: \[4x^4-ax^3+bx^2-cx+5=0\] knowing that they're all real, positives and that: \[\frac{r_1}{2}+\frac{r_2}{4}+\frac{r_3}{5}+\frac{r_4}{8}=1\]

~translated into English by Tomas Diaz. ~orders@tomasdiaz.com

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

https://www.oma.org.ar/enunciados/ibe1.htm