Difference between revisions of "1995 AIME Problems/Problem 7"
(→Solution) |
Andrew2028 (talk | contribs) m (→Solution 1) |
||
(22 intermediate revisions by 10 users not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Given that <math> | + | Given that <math>(1+\sin t)(1+\cos t)=5/4</math> and |
:<math>(1-\sin t)(1-\cos t)=\frac mn-\sqrt{k},</math> | :<math>(1-\sin t)(1-\cos t)=\frac mn-\sqrt{k},</math> | ||
− | where <math> | + | where <math>k, m,</math> and <math>n_{}</math> are [[positive integer]]s with <math>m_{}</math> and <math>n_{}</math> [[relatively prime]], find <math>k+m+n.</math> |
− | == Solution == | + | == Solution 1 == |
From the givens, | From the givens, | ||
− | <math>2\sin t \cos t + 2 \sin t + 2 \cos t = \frac{1}{2}</math>, and adding <math>\sin^2 t + \cos^2t = 1</math> to both sides gives <math>(\sin t + \cos t)^2 + 2(\sin t + \cos t) = \frac{3}{2}</math>. Completing the square on the left in the variable <math>(\sin t + \cos t)</math> gives <math>\sin t + \cos t = -1 \pm \sqrt{\frac{5}{2}}</math>. Since <math>|\sin t + \cos t| \leq \sqrt 2 < 1 + \sqrt{\frac{5}{2}}</math>, we have <math>\sin t + \cos t = \sqrt{\frac{5}{2}} - 1</math>. Subtracting twice this from our original equation gives <math>(\sin t - 1)(\cos t - 1) = \sin t \cos t - \sin t - \cos t + 1 = \frac{13}{4} - \sqrt{10}</math>, so the answer is <math>13 + 4 + 10 = 027</math>. | + | <math>2\sin t \cos t + 2 \sin t + 2 \cos t = \frac{1}{2}</math>, and adding <math>\sin^2 t + \cos^2t = 1</math> to both sides gives <math>(\sin t + \cos t)^2 + 2(\sin t + \cos t) = \frac{3}{2}</math>. Completing the square on the left in the variable <math>(\sin t + \cos t)</math> gives <math>\sin t + \cos t = -1 \pm \sqrt{\frac{5}{2}}</math>. Since <math>|\sin t + \cos t| \leq \sqrt 2 < 1 + \sqrt{\frac{5}{2}}</math>, we have <math>\sin t + \cos t = \sqrt{\frac{5}{2}} - 1</math>. Subtracting twice this from our original equation gives <math>(\sin t - 1)(\cos t - 1) = \sin t \cos t - \sin t - \cos t + 1 = \frac{13}{4} - \sqrt{10}</math>, so the answer is <math>13 + 4 + 10 = \boxed{027}</math>. |
+ | |||
+ | == Solution 2 == | ||
+ | Let <math>(1 - \sin t)(1 - \cos t) = x</math>. Multiplying <math>x</math> with the given equation, <math>\frac{5x}{4} = (1 - \sin^2 t)(1 - \cos^2 t) = \sin^2 t \cos ^2 t</math>, and <math>\frac{\sqrt{5x}}{2} = \sin t \cos t</math>. Simplifying and rearranging the given equation, <math>\sin t + \cos t = \frac{5}{4} - (\sin^2 t + \cos^2 t) - \sin t \cos t = \frac{1}{4} - \frac{\sqrt{5x}}{2}</math>. Notice that <math>(1 + \sin t)(1 + \cos t) - 2(\sin t + \cos t) = x</math>, and substituting, <math>x = \frac{5}{4} - 2( \frac{1}{4} - \frac{\sqrt{5x}}{2}) = \frac{3}{4} + \sqrt{5x}</math>. Rearranging and squaring, <math>5x = x^2 - \frac{3}{2} x + \frac{9}{16}</math>, so <math>x^2 - \frac{13}{2} x + \frac{9}{16} = 0</math>, and <math>x = \frac{13}{4} \pm \sqrt{10}</math>, but clearly, <math>0 \leq x < 4</math>. Therefore, <math>x = \frac{13}{4} - \sqrt{10}</math>, and the answer is <math> 13 + 4 + 10 = \boxed{027}</math>. | ||
+ | |||
+ | == Solution 3 == | ||
+ | |||
+ | We want <math>1+\sin t \cos t-\sin t-\cos t</math>. However, note that we only need to find <math>\sin t+\cos t</math>. | ||
+ | |||
+ | Let <math>y = \sin t+\cos t \rightarrow y^2 = \sin^2 t + \cos^2 t + 2\sin t \cos t = 1 + 2\sin t \cos t</math> | ||
+ | |||
+ | From this we have <math>\sin t \cos t = \frac{y^2-1}{2}</math> and <math>\sin t + \cos t = y</math> | ||
+ | |||
+ | Substituting, we have <math>2y^2+4y-3=0 \rightarrow y = \frac {-2 \pm \sqrt{10}}{2}</math> | ||
+ | |||
+ | <math>\frac{5}{4} - 2(\frac{-2+\sqrt{10}}{2}) = \frac{13}{4}-\sqrt{10} \rightarrow 13+10+4=\boxed{027}</math>. | ||
== See also == | == See also == | ||
Line 12: | Line 27: | ||
[[Category:Intermediate Trigonometry Problems]] | [[Category:Intermediate Trigonometry Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 08:23, 13 December 2023
Problem
Given that and
where and are positive integers with and relatively prime, find
Solution 1
From the givens, , and adding to both sides gives . Completing the square on the left in the variable gives . Since , we have . Subtracting twice this from our original equation gives , so the answer is .
Solution 2
Let . Multiplying with the given equation, , and . Simplifying and rearranging the given equation, . Notice that , and substituting, . Rearranging and squaring, , so , and , but clearly, . Therefore, , and the answer is .
Solution 3
We want . However, note that we only need to find .
Let
From this we have and
Substituting, we have
.
See also
1995 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.