Difference between revisions of "2004 AMC 10A Problems/Problem 25"

(Problem)
m ({{dup}})
 
Line 1: Line 1:
==Problem==
+
#redirect [[2004 AMC 12A Problems/Problem 22]]
Three mutually tangent spheres of radius 1 rest on a horizontal plane. A sphere of radius 2 rests on them. What is the distance from the plane to the top of the larger sphere?
 
 
 
<math> \mathrm{(A) \ } 3+\dfrac{\sqrt{30}}{2} \qquad \mathrm{(B) \ } 3+\dfrac{\sqrt{69}}{3} \qquad \mathrm{(C) \ } 3+\dfrac{\sqrt{123}}{4} \qquad \mathrm{(D) \ } \dfrac{52}{9} \qquad \mathrm{(E) \ } 3+2\sqrt{2}  </math>
 
 
 
==Solution==
 
 
 
{{solution}}
 
 
 
 
 
 
 
==See also==
 
[[2004 AMC 10A Problems]]
 
 
 
 
 
 
 
 
 
{{AMC10 box|year=2004|ab=A|num-b=24|after=Last Problem}}
 

Latest revision as of 16:19, 4 December 2007