Difference between revisions of "2004 AMC 12A Problems/Problem 22"

Line 13: Line 13:
 
== See also ==  
 
== See also ==  
 
{{AMC12 box|year=2004|ab=A|num-b=21|num-a=23}}
 
{{AMC12 box|year=2004|ab=A|num-b=21|num-a=23}}
 
{{AMC10 box|year=2004|ab=A|num-b=24|after=Final Question}}
 
  
 
[[Category:Intermediate Geometry Problems]]
 
[[Category:Intermediate Geometry Problems]]

Revision as of 13:26, 4 December 2007

Problem

Three mutually tangent spheres of radius $1$ rest on a horizontal plane. A sphere of radius $2$ rests on them. What is the distance from the plane to the top of the larger sphere?

$\text {(A)} 3 + \frac {\sqrt {30}}{2} \qquad \text {(B)} 3 + \frac {\sqrt {69}}{3} \qquad \text {(C)} 3 + \frac {\sqrt {123}}{4}\qquad \text {(D)} \frac {52}{9}\qquad \text {(E)}3 + 2\sqrt2$

Solution

The height from the center of the bottom sphere to the plane is $1$, and from the center of the top sphere to the tip is $2$. We now need the vertical height of the centers. If we connect the centers, we get a triangular pyramid with an equilateral triangle base. The distance from the vertex of the equilateral triangle to its centroid can be found by $30-60-90 \triangle$s to be $\frac{2}{\sqrt{3}}$.


An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.


By the Pythagorean Theorem, we have $\left(\frac{2}{\sqrt{3}}\right)^2 + h^2 = 3^2 \Longrightarrow h = \frac{\sqrt{69}}{3}$. Adding the heights up, we get $\frac{\sqrt{69}}{3} + 1 + 2 = \frac{\sqrt{69} + 9}{3} \Rightarrow \mathrm{(B)}$.

See also

2004 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions