Difference between revisions of "Bisector"
(→Division of bisector) |
(→Proportions for bisectors) |
||
Line 23: | Line 23: | ||
'''vladimir.shelomovskii@gmail.com, vvsss''' | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
==Proportions for bisectors== | ==Proportions for bisectors== | ||
+ | [[File:Bisector 60.png|400px|right]] | ||
The bisectors <math>AE</math> and <math>CD</math> of a triangle ABC with <math>\angle B = 60^\circ</math> meet at point <math>I.</math> | The bisectors <math>AE</math> and <math>CD</math> of a triangle ABC with <math>\angle B = 60^\circ</math> meet at point <math>I.</math> | ||
Line 30: | Line 31: | ||
Denote the angles <math>A = 2\alpha, B = 2\beta = 60^\circ, C = 2 \gamma.</math> | Denote the angles <math>A = 2\alpha, B = 2\beta = 60^\circ, C = 2 \gamma.</math> | ||
− | <math>\angle | + | <math>\angle AIC = 180^\circ - \alpha - \gamma = 90^\circ + \beta = 120^\circ \implies B, D, I,</math> and <math>E</math> are concyclic. |
<cmath>\angle BEA = \angle BEI = \angle ADC.</cmath> | <cmath>\angle BEA = \angle BEI = \angle ADC.</cmath> | ||
The area of the <math>\triangle ABC</math> is | The area of the <math>\triangle ABC</math> is | ||
− | <cmath>[ABC] = AB \cdot h_C = AB \cdot CD \cdot \sin \angle ADC = BC \cdot AE \cdot \sin \angle AEB \implies \frac {CD}{AE} = \frac {BC}{AB} = \frac {a}{c}.</cmath> | + | <cmath>[ABC] = AB \cdot h_C = AB \cdot CD \cdot \sin \angle ADC = BC \cdot AE \cdot \sin \angle AEB \implies</cmath> |
− | <cmath>\frac {DI}{IE} = \frac {DI}{ | + | <cmath>\frac {CD}{AE} = \frac {BC}{AB} = \frac {a}{c}.</cmath> |
+ | <cmath>\frac {DI}{IE} = \frac {DI}{CD} \cdot \frac {AE}{IE}\cdot \frac {CD}{AE}= \frac {c}{a+b+c} \cdot \frac {a+b+c} {a} \cdot \frac {a}{c} = 1.</cmath> | ||
'''vladimir.shelomovskii@gmail.com, vvsss''' | '''vladimir.shelomovskii@gmail.com, vvsss''' |
Revision as of 12:47, 8 December 2023
Division of bisector
Let a triangle be given.
Let and be the bisectors of
he segments and meet at point Find
Solution
Similarly
Denote Bisector
Bisector vladimir.shelomovskii@gmail.com, vvsss
Proportions for bisectors
The bisectors and of a triangle ABC with meet at point
Prove
Proof
Denote the angles and are concyclic. The area of the is vladimir.shelomovskii@gmail.com, vvsss