Difference between revisions of "2021 AIME I Problems/Problem 7"
Magnetoninja (talk | contribs) (→Solution 4) |
MRENTHUSIASM (talk | contribs) (→Solution 1) |
||
(16 intermediate revisions by 5 users not shown) | |||
Line 3: | Line 3: | ||
==Solution 1== | ==Solution 1== | ||
− | + | It is trivial that the maximum value of <math>\sin \theta</math> is <math>1</math>, is achieved at <math>\theta = \frac{\pi}{2}+2k\pi</math> for some integer <math>k</math>. | |
This implies that <math>\sin(mx) = \sin(nx) = 1</math>, and that <math>mx = \frac{\pi}{2}+2a\pi</math> and <math>nx = \frac{\pi}{2}+2b\pi</math>, for integers <math>a, b</math>. | This implies that <math>\sin(mx) = \sin(nx) = 1</math>, and that <math>mx = \frac{\pi}{2}+2a\pi</math> and <math>nx = \frac{\pi}{2}+2b\pi</math>, for integers <math>a, b</math>. | ||
Line 16: | Line 16: | ||
Finally, if <math>k > 1</math>, note that <math>k</math> must be an integer. This means that <math>m, n</math> belong to the set <math>\{k, 5k, 9k, \dots\}</math>, or <math>\{3k, 7k, 11k, \dots\}</math>. Taking casework on <math>k</math>, we get the sets <math>\{2, 10, 18, 26\}, \{6, 14, 22, 30\}, \{4, 20\}, \{12, 28\}</math>. Some sets have been omitted; this is because they were counted in the other cases already. This sums to <math>\binom 42 + \binom 42 + \binom 22 + \binom 22</math>. | Finally, if <math>k > 1</math>, note that <math>k</math> must be an integer. This means that <math>m, n</math> belong to the set <math>\{k, 5k, 9k, \dots\}</math>, or <math>\{3k, 7k, 11k, \dots\}</math>. Taking casework on <math>k</math>, we get the sets <math>\{2, 10, 18, 26\}, \{6, 14, 22, 30\}, \{4, 20\}, \{12, 28\}</math>. Some sets have been omitted; this is because they were counted in the other cases already. This sums to <math>\binom 42 + \binom 42 + \binom 22 + \binom 22</math>. | ||
− | In total, there are <math>\binom 82 + \binom 72 + \binom 42 + \binom 42 + \binom 22 + \binom 22 = \boxed{ | + | In total, there are <math>\binom 82 + \binom 72 + \binom 42 + \binom 42 + \binom 22 + \binom 22 = \boxed{063}</math> pairs of <math>(m, n)</math>. |
This solution was brought to you by ~Leonard_my_dude~ | This solution was brought to you by ~Leonard_my_dude~ | ||
Line 56: | Line 56: | ||
For <math>p = 2</math> we get <math>\{4, 20\}, \{12, 28\}</math> | For <math>p = 2</math> we get <math>\{4, 20\}, \{12, 28\}</math> | ||
+ | |||
+ | Note that <math>16\mid{a}</math> since <math>m</math> will cancel out a factor of 4 from <math>a</math>, and <math>\frac{a}{m}</math> must contain a factor of 4. Again, <math>1-4X</math> will never contribute a factor of 2. Simply inspecting, we see two feasible values for <math>a</math> and <math>m</math> such that <math>a+m\leq30</math>. | ||
If we increase the value of <math>p</math> more, there will be less than two integers in our sets, so we are done there. | If we increase the value of <math>p</math> more, there will be less than two integers in our sets, so we are done there. | ||
Line 63: | Line 65: | ||
In each of these sets we can choose 2 numbers to be <math>m</math> and <math>n</math> and then assign them in increasing order. Thus there are: | In each of these sets we can choose 2 numbers to be <math>m</math> and <math>n</math> and then assign them in increasing order. Thus there are: | ||
− | <cmath>\dbinom{8}{2}+\dbinom{7}{2}+\dbinom{4}{2}+\dbinom{4}{2}+\dbinom{2}{2}+\dbinom{2}{2} = 28+21+6+6+1+1 = \boxed{ | + | <cmath>\dbinom{8}{2}+\dbinom{7}{2}+\dbinom{4}{2}+\dbinom{4}{2}+\dbinom{2}{2}+\dbinom{2}{2} = 28+21+6+6+1+1 = \boxed{063}</cmath> possible pairs <math>(m,n)</math> that satisfy the conditions. |
-KingRavi | -KingRavi | ||
Line 86: | Line 88: | ||
==Solution 4== | ==Solution 4== | ||
− | The equation implies that <math>\sin(mx)=\sin(nx)=1</math>. Therefore, we can write <math>mx</math> as <math>2{\pi}k_1+\frac{\pi}{2}</math> and <math>nx</math> as <math>2{\pi}k_2+\frac{\pi}{2}</math> for integers <math>k_1</math> and <math>k_2</math>. Then, <math>\frac{mx}{nx}=\frac{m}{n}=\frac{2k_1+\frac{1}{2}}{2k_2+\frac{1}{2}}</math>. Cross multiplying, we get <math>m\cdot{(2k_2+\frac{1}{2})}=n\cdot{(2k_1+\frac{1}{2})} \Longrightarrow 4k_2m-4k_1n=n-m</math>. Let <math>n-m=a</math> so the equation becomes <math>4(m(k_2-k_1)+k_1a)=a</math>. Let <math>k_2-k_1=X</math> and <math>k_1=Y</math>, then the equation becomes <math>a=4Ym+4Xa \Longrightarrow \frac{a(1-4X)}{m}=4Y</math> Note that <math>X</math> and <math>Y</math> | + | The equation implies that <math>\sin(mx)=\sin(nx)=1</math>. Therefore, we can write <math>mx</math> as <math>2{\pi}k_1+\frac{\pi}{2}</math> and <math>nx</math> as <math>2{\pi}k_2+\frac{\pi}{2}</math> for integers <math>k_1</math> and <math>k_2</math>. Then, <math>\frac{mx}{nx}=\frac{m}{n}=\frac{2k_1+\frac{1}{2}}{2k_2+\frac{1}{2}}</math>. Cross multiplying, we get <math>m\cdot{(2k_2+\frac{1}{2})}=n\cdot{(2k_1+\frac{1}{2})} \Longrightarrow 4k_2m-4k_1n=n-m</math>. Let <math>n-m=a</math> so the equation becomes <math>4(m(k_2-k_1)+k_1a)=a</math>. Let <math>k_2-k_1=X</math> and <math>k_1=Y</math>, then the equation becomes <math>a=4Ym+4Xa \Longrightarrow \frac{a(1-4X)}{m}=4Y</math>. Note that <math>X</math> and <math>Y</math> can vary accordingly, and <math>4\mid{a}</math>. Next, we do casework on <math>m\pmod{4}</math>: |
If <math>m\equiv 1\pmod{4}</math>: | If <math>m\equiv 1\pmod{4}</math>: | ||
− | Once <math>a</math> and <math>m</math> are determined, <math>n</math> is determined, so <math>a+m\leq30</math>. <math>a\in {4,8,12,\dots,28}</math> and <math>m\in {1,5,9,\dots,29}</math>. Therefore, there are <math>\sum_{i=1}^{7}{i}=28</math> ways for this case such that <math>a+m\leq30</math>. | + | Once <math>a</math> and <math>m</math> are determined, <math>n</math> is determined, so <math>a+m\leq30</math>. <math>a\in \{4,8,12,\dots,28\}</math> and <math>m\in \{1,5,9,\dots,29\}</math>. Therefore, there are <math>\sum_{i=1}^{7}{i}=28</math> ways for this case such that <math>a+m\leq30</math>. |
If <math>m\equiv 3\pmod{4}</math>: | If <math>m\equiv 3\pmod{4}</math>: | ||
− | <math>a\in {4,8,12,\dots,28}</math> and <math>m\in {3,7,11,\dots,27}</math>. Therefore, there are <math>\sum_{i=1}^{6}{i}=21</math> ways such that <math>a+m\leq30</math>. | + | <math>a\in \{4,8,12,\dots,28\}</math> and <math>m\in \{3,7,11,\dots,27\}</math>. Therefore, there are <math>\sum_{i=1}^{6}{i}=21</math> ways such that <math>a+m\leq30</math>. |
If <math>m\equiv 2\pmod{4}</math>: | If <math>m\equiv 2\pmod{4}</math>: | ||
− | Note that <math>a | + | Note that <math>8\mid{a}</math> since <math>m</math> in this case will have a factor of 2, which will cancel out a factor of 2 in <math>a</math>, and we need the left hand side to divide 4. Also, <math>1-4X\equiv 1\pmod{4}</math> so it is odd and will therefore never contribute a factor of 2. <math>a\in \{8,16,24\}</math> and <math>m\in \{2,6,10,\dots,30\}</math>. Following the condition <math>a+m\leq30</math>, we conclude that there are <math>6+4+2=12</math> ways for this case. |
If <math>m\equiv 0\pmod{4}</math>: | If <math>m\equiv 0\pmod{4}</math>: | ||
− | + | Adding all the cases up, we obtain <math>28+21+12+2=\boxed{063}</math> | |
− | + | ~[https://artofproblemsolving.com/wiki/index.php/User:Magnetoninja Magnetoninja] | |
==Remark== | ==Remark== |
Revision as of 08:12, 3 December 2023
Contents
Problem
Find the number of pairs of positive integers with
such that there exists a real number
satisfying
Solution 1
It is trivial that the maximum value of is
, is achieved at
for some integer
.
This implies that , and that
and
, for integers
.
Taking their ratio, we have
It remains to find all
that satisfy this equation.
If , then
. This corresponds to choosing two elements from the set
. There are
ways to do so.
If , by multiplying
and
by the same constant
, we have that
. Then either
, or
. But the first case was already counted, so we don't need to consider that case. The other case corresponds to choosing two numbers from the set
. There are
ways here. (This argument seems to have a logical flaw)
Finally, if , note that
must be an integer. This means that
belong to the set
, or
. Taking casework on
, we get the sets
. Some sets have been omitted; this is because they were counted in the other cases already. This sums to
.
In total, there are pairs of
.
This solution was brought to you by ~Leonard_my_dude~
Solution 2
In order for ,
.
This happens when
mod
This means that and
for any integers
and
.
As in Solution 1, take the ratio of the two equations:
Now notice that the numerator and denominator of are both odd, which means that
and
have the same power of two (the powers of 2 cancel out).
Let the common power be : then
, and
where
and
are integers between 1 and 30.
We can now rewrite the equation:
Now it is easy to tell that mod
and
mod
. However, there is another case: that
mod
and
mod
. This is because multiplying both
and
by
will not change the fraction, but each congruence will be changed to
mod
mod
.
From the first set of congruences, we find that and
can be two of
.
From the second set of congruences, we find that and
can be two of
.
Now all we have to do is multiply by to get back to
and
.
Let’s organize the solutions in order of increasing values of
, keeping in mind that
and
are bounded between 1 and 30.
For we get
.
For we get
For we get
Note that since
will cancel out a factor of 4 from
, and
must contain a factor of 4. Again,
will never contribute a factor of 2. Simply inspecting, we see two feasible values for
and
such that
.
If we increase the value of more, there will be less than two integers in our sets, so we are done there.
There are 8 numbers in the first set, 7 in the second, 4 in the third, 4 in the fourth, 2 in the fifth, and 2 in the sixth.
In each of these sets we can choose 2 numbers to be and
and then assign them in increasing order. Thus there are:
possible pairs
that satisfy the conditions.
-KingRavi
Solution 3
We know that the range of sine is between and
, inclusive.
Thus, the only way for the sum to be is for
.
Note that .
Assuming and
are both positive,
and
could be
. There are
ways, so
.
If both are negative, and
could be
. There are
ways, so
.
However, the pair could also be
and so on. The same goes for some other pairs.
In total there are of these extra pairs.
The answer is .
Solution 4
The equation implies that . Therefore, we can write
as
and
as
for integers
and
. Then,
. Cross multiplying, we get
. Let
so the equation becomes
. Let
and
, then the equation becomes
. Note that
and
can vary accordingly, and
. Next, we do casework on
:
If :
Once and
are determined,
is determined, so
.
and
. Therefore, there are
ways for this case such that
.
If :
and
. Therefore, there are
ways such that
.
If :
Note that since
in this case will have a factor of 2, which will cancel out a factor of 2 in
, and we need the left hand side to divide 4. Also,
so it is odd and will therefore never contribute a factor of 2.
and
. Following the condition
, we conclude that there are
ways for this case.
If :
Adding all the cases up, we obtain
Remark
The graphs of and
are shown here in Desmos: https://www.desmos.com/calculator/busxadywja
Move the sliders around for and
to observe the geometric representation generated by each pair
~MRENTHUSIASM (inspired by TheAMCHub)
Video Solution
~mathproblemsolvingskills
Video Solution
https://www.youtube.com/watch?v=LUkQ7R1DqKo
~Mathematical Dexterity
See Also
2021 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.