Difference between revisions of "2013 Canadian MO Problems/Problem 4"
(12 intermediate revisions by the same user not shown) | |||
Line 51: | Line 51: | ||
<math>\sum_{j=1}^n f_j(r)=\frac{r \left\lfloor \frac{n}{r} \right\rfloor \left( \left\lfloor \frac{n}{r} \right\rfloor+1 \right)}{2}+\left( n-\left\lfloor \frac{n}{r} \right\rfloor \right)r +\frac{n^2+n}{2r}</math> | <math>\sum_{j=1}^n f_j(r)=\frac{r \left\lfloor \frac{n}{r} \right\rfloor \left( \left\lfloor \frac{n}{r} \right\rfloor+1 \right)}{2}+\left( n-\left\lfloor \frac{n}{r} \right\rfloor \right)r +\frac{n^2+n}{2r}</math> | ||
+ | Since <math>\left\lfloor \frac{n}{r} \right\rfloor \le \frac{n}{r}</math>, | ||
+ | <math>\sum_{j=1}^n f_j(r)<\frac{r}{2}\left( \frac{n}{r} \right)\left( \frac{n}{r}+1 \right)+n\left( n- \frac{n}{r}\right)+\frac{n^2+n}{2r}</math> | ||
+ | |||
+ | <math>\sum_{j=1}^n f_j(r) < n^2 \left( \frac{1}{2r}+1-\frac{1}{r}+ \frac{1}{2r}\right)+\left( \frac{1}{2} +\frac{1}{2r}\right)n</math> | ||
+ | |||
+ | <math>\sum_{j=1}^n f_j(r) < n^2 +\left( \frac{1}{2} +\frac{1}{2r}\right)n</math> | ||
+ | |||
+ | Since <math>r>1</math>, then | ||
+ | |||
+ | <math>\frac{1}{2r} < \frac{1}{2}</math> | ||
+ | |||
+ | <math>\frac{1}{2r}+\frac{1}{2} < 1</math> | ||
+ | |||
+ | <math>\left( \frac{1}{2r}+\frac{1}{2} \right)n < n</math> | ||
+ | |||
+ | <math>n^2+\left( \frac{1}{2r}+\frac{1}{2} \right)n < n^2+n</math> | ||
+ | |||
+ | Therefore, | ||
+ | |||
+ | <math>\sum_{j=1}^n f_j(r) < n^2+n</math>, which together with the equality case of <math>r=1</math> proves the left side of the equation: | ||
+ | |||
+ | <math>\sum_{j=1}^n f_j(r) \le n^2+n</math> | ||
+ | |||
+ | Now we look at <math>g_j(r)</math>: | ||
+ | |||
+ | Since <math>j \le n</math>, then <math>\min\left(\left\lceil\frac{j}{r}\right\rceil, n\right)=\left\lceil\frac{j}{r}\right\rceil</math> | ||
+ | |||
+ | Therefore, | ||
+ | |||
+ | <math>g_j(r)=\begin{cases} n+\left\lceil \frac{j}{r} \right\rceil\; , & \left\lceil jr \right\rceil > n \\ | ||
+ | \left\lceil jr \right\rceil+\left\lceil \frac{j}{r} \right\rceil\; , & \left\lceil jr \right\rceil \le n \end{cases}</math> | ||
+ | |||
+ | <math>\sum_{j=1}^n g_j(r)=\sum_{j=1}^{\left\lceil \frac{n}{r} \right\rceil}\left\lceil jr \right\rceil+\sum_{j=\left\lceil \frac{n}{r} \right\rceil +1}^{n}n+\sum_{j=1}^{n}\left\lceil \frac{j}{r} \right\rceil</math> | ||
+ | |||
+ | <math>\sum_{j=1}^n g_j(r) \ge \sum_{j=1}^{\left\lceil \frac{n}{r} \right\rceil} jr +\sum_{j=\left\lceil \frac{n}{r} \right\rceil +1}^{n}n+\sum_{j=1}^{n}\left\lceil \frac{j}{r} \right\rceil</math> | ||
+ | |||
+ | <math>\sum_{j=1}^n g_j(r) > \frac{r}{2}\left( \left\lceil \frac{n}{r} \right\rceil \right)\left( \left\lceil \frac{n}{r} \right\rceil+1 \right)+n\left( n- \left\lceil \frac{n}{r} \right\rceil\right)+\sum_{j=1}^{n}\left\lceil \frac{j}{r} \right\rceil</math> | ||
+ | |||
+ | Since <math>\left\lceil \frac{n}{r} \right\rceil \ge \frac{n}{r}</math>, | ||
+ | |||
+ | <math>\sum_{j=1}^n g_j(r) > \frac{r}{2}\left( \frac{n}{r} \right)\left( \frac{n}{r}+1 \right)+n\left( n- \frac{n}{r}\right)+\sum_{j=1}^{n}\left\lceil \frac{j}{r} \right\rceil</math> | ||
+ | |||
+ | When <math>r</math> is a whole number and <math>n</math> is divisible by <math>r</math> we notice the following: | ||
+ | |||
+ | <math>\sum_{j=1}^{n}\left\lceil \frac{j}{r} \right\rceil=\frac{n(n+r)}{2r}</math> | ||
+ | |||
+ | Then <math>n</math> is not divisible by <math>r</math> then we add more ceiling terms to the expression. Likewise, when <math>r</math> is not a whole number and <math>r>1</math>, the sum is larger. | ||
+ | |||
+ | Therefore, | ||
+ | |||
+ | <math>\sum_{j=1}^{n}\left\lceil \frac{j}{r} \right\rceil \ge \frac{n(n+r)}{2r}</math> | ||
+ | |||
+ | Hence, | ||
+ | |||
+ | <math>\sum_{j=1}^n g_j(r) > \frac{r}{2}\left( \frac{n}{r} \right)\left( \frac{n}{r}+1 \right)+n\left( n- \frac{n}{r}\right)+\frac{n(n+r)}{2r}</math> | ||
+ | |||
+ | <math>\sum_{j=1}^n g_j(r) > n^2 \left( \frac{1}{2r}+1-\frac{1}{r}+ \frac{1}{2r}\right)+\left( \frac{1}{2} +\frac{r}{2r}\right)n</math> | ||
+ | |||
+ | <math>\sum_{j=1}^n g_j(r) > n^2+\left( \frac{1}{2} +\frac{1}{2}\right)n</math> | ||
+ | |||
+ | <math>\sum_{j=1}^n g_j(r) > n^2+n</math> which together with the case where <math>r=1</math>, we have: | ||
+ | |||
+ | <math>\sum_{j=1}^n g_j(r) \ge n^2+n</math> | ||
+ | |||
+ | and together with <math>f_j(r)</math> we have: | ||
+ | |||
+ | <math>\sum_{j=1}^n f_j(r)\leq n^2+n\leq \sum_{j=1}^n g_j(r)</math> | ||
~Tomas Diaz. orders@tomasdiaz.com | ~Tomas Diaz. orders@tomasdiaz.com | ||
+ | |||
{{alternate solutions}} | {{alternate solutions}} |
Latest revision as of 19:13, 27 November 2023
Problem
Let be a positive integer. For any positive integer and positive real number , define where denotes the smallest integer greater than or equal to . Prove that for all positive real numbers .
Solution
First thing to note on both functions is the following:
and
Thus, we are going to look at two cases:\. When , and when which is the same as when
Case 1:
Since in the sum, then
, and the equality holds.
Likewise,
Since is integer we have:
, and the equality holds.
Thus for we have equality as:
Case:
Since , then
Therefore,
Since ,
Since , then
Therefore,
, which together with the equality case of proves the left side of the equation:
Now we look at :
Since , then
Therefore,
Since ,
When is a whole number and is divisible by we notice the following:
Then is not divisible by then we add more ceiling terms to the expression. Likewise, when is not a whole number and , the sum is larger.
Therefore,
Hence,
which together with the case where , we have:
and together with we have:
~Tomas Diaz. orders@tomasdiaz.com
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.