Difference between revisions of "2013 Canadian MO Problems/Problem 4"

Line 8: Line 8:
 
==Solution==
 
==Solution==
  
First we evaluate both functions when <math>r=1</math>
+
Case 1: <math>r=1</math>
  
 
Since <math>j \le n</math> in the sum, the
 
Since <math>j \le n</math> in the sum, the

Revision as of 16:29, 27 November 2023

Problem

Let $n$ be a positive integer. For any positive integer $j$ and positive real number $r$, define \[f_j(r) =\min (jr, n)+\min\left(\frac{j}{r}, n\right),\text{ and }g_j(r) =\min (\lceil jr\rceil, n)+\min\left(\left\lceil\frac{j}{r}\right\rceil, n\right),\] where $\lceil x\rceil$ denotes the smallest integer greater than or equal to $x$. Prove that \[\sum_{j=1}^n f_j(r)\leq n^2+n\leq \sum_{j=1}^n g_j(r)\] for all positive real numbers $r$.

Solution

Case 1: $r=1$

Since $j \le n$ in the sum, the


~Tomas Diaz. orders@tomasdiaz.com Template:Olution