Difference between revisions of "2013 Canadian MO Problems/Problem 1"
Line 44: | Line 44: | ||
Note that since <math>c_0</math>, <math>c_1</math>, and <math>c_2</math> are not present in the expression before <math>x^2</math>, they can be anything and the coefficient in front of <math>x^2</math> is still zero. | Note that since <math>c_0</math>, <math>c_1</math>, and <math>c_2</math> are not present in the expression before <math>x^2</math>, they can be anything and the coefficient in front of <math>x^2</math> is still zero. | ||
− | So now we just need to find <math>c_1</math> and <math>c_2</math> | + | So now we just need to find <math>c_1</math> and <math>c_2</math>, for that we look at the coefficient in front of <math>x</math> in <math>F(x)</math>: |
− | |||
− | |||
<math>\left( c_1-c_0+\sum_{i=1}^{n}(-1)^{i-1}\binom{i}{i-1}c_i+\sum_{i=0}^{n}(-1)^{i}\binom{i}{i}c_i \right)x</math> | <math>\left( c_1-c_0+\sum_{i=1}^{n}(-1)^{i-1}\binom{i}{i-1}c_i+\sum_{i=0}^{n}(-1)^{i}\binom{i}{i}c_i \right)x</math> |
Revision as of 00:16, 27 November 2023
Problem
Determine all polynomials with real coefficients such that is a constant polynomial.
Solution
Let
In order for the new polynomial to be a constant, all the coefficients in front of for need to be zero.
So we start by looking at the coefficient in front of :
Since ,
We then evaluate the term of the sum when :
Therefore all coefficients for need to be zero so that the coefficient in front of is zero.
That is, .
Note that since , , and are not present in the expression before , they can be anything and the coefficient in front of is still zero.
So now we just need to find and , for that we look at the coefficient in front of in :
Since =0 for :
Therefore , thus satisfies the condition for to be a constant polynomial.
So we can set and , and all the polynomials will be in the form:
where
~Tomas Diaz. orders@tomasdiaz.com
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.