Difference between revisions of "Mock AIME 6 2006-2007 Problems/Problem 8"
(7 intermediate revisions by the same user not shown) | |||
Line 26: | Line 26: | ||
<math>a_n=a_{n\;mod\;6}</math> | <math>a_n=a_{n\;mod\;6}</math> | ||
+ | Since, <math>2007 \equiv 3\;(mod\;6)</math> and <math>2008 \equiv 4\;(mod\;6)</math>, then <math>a_{2007}=a_3=\frac{1}{x}</math>, and <math>a_{2008}=a_4=\frac{1}{y}</math> | ||
+ | From <math>a_{2007}\cdot a_{2008}=\frac 13</math>, we get <math>\frac{1}{xy}=\frac{1}{3}</math>, thus <math>xy=3</math> | ||
+ | and from <math>a_{2007}+a_{2008}=3</math>, we get <math>\frac{1}{x}+\frac{1}{y}=3</math>. | ||
+ | Therefore, <math>\frac{x+y}{xy}=3</math> which gives <math>x+y=3xy=(3)(3)=9</math> | ||
+ | Then, <math>(x+y)^2=81</math> which gives <math>x^2+2xy+y^2=81</math> which gives <math>x^2+y^2=81-2xy=81-(2)(3)=75</math> | ||
+ | |||
+ | Finally, <math>x^3+y^3=(x+y)(x^2-xy+y^2)=(9)(75-3)=\boxed{648}</math> | ||
~Tomas Diaz. orders@tomasdiaz.com | ~Tomas Diaz. orders@tomasdiaz.com | ||
+ | |||
{{alternate solutions}} | {{alternate solutions}} |
Latest revision as of 17:06, 26 November 2023
Problem
A sequence of positive reals defined by , , and for all integers . Given that and , find .
Solution
And the sequence repeats every 6 steps.
Therefore,
Since, and , then , and
From , we get , thus
and from , we get .
Therefore, which gives
Then, which gives which gives
Finally,
~Tomas Diaz. orders@tomasdiaz.com
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.