Difference between revisions of "Mock AIME 6 2006-2007 Problems/Problem 8"
(Created page with "==Problem== A sequence of positive reals defined by <math>a_0=x</math>, <math>a_1=y</math>, and <math>a_n\cdot a_{n+2}=a_{n+1}</math> for all integers <math>n\ge 0</math>. Gi...") |
|||
(10 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
− | {{ | + | |
+ | <math>a_0=x</math> | ||
+ | |||
+ | <math>a_1=y</math> | ||
+ | |||
+ | <math>a_2=\frac{a_1}{a_0}=\frac{y}{x}</math> | ||
+ | |||
+ | <math>a_3=\frac{a_2}{a_1}=\frac{\frac{y}{x}}{y}=\frac{1}{x}</math> | ||
+ | |||
+ | <math>a_4=\frac{a_3}{a_2}=\frac{\frac{1}{x}}{\frac{y}{x}}=\frac{1}{y}</math> | ||
+ | |||
+ | <math>a_5=\frac{a_4}{a_3}=\frac{\frac{1}{y}}{\frac{1}{x}}=\frac{x}{y}</math> | ||
+ | |||
+ | <math>a_6=\frac{a_5}{a_4}=\frac{\frac{x}{y}}{\frac{1}{y}}=x=a_0</math> | ||
+ | |||
+ | <math>a_7=\frac{a_6}{a_5}=\frac{x}{\frac{x}{y}}=y=a_1</math> | ||
+ | |||
+ | And the sequence repeats every 6 steps. | ||
+ | |||
+ | Therefore, | ||
+ | |||
+ | <math>a_n=a_{n\;mod\;6}</math> | ||
+ | |||
+ | Since, <math>2007 \equiv 3\;(mod\;6)</math> and <math>2008 \equiv 4\;(mod\;6)</math>, then <math>a_{2007}=a_3=\frac{1}{x}</math>, and <math>a_{2008}=a_4=\frac{1}{y}</math> | ||
+ | |||
+ | From <math>a_{2007}\cdot a_{2008}=\frac 13</math>, we get <math>\frac{1}{xy}=\frac{1}{3}</math>, thus <math>xy=3</math> | ||
+ | |||
+ | and from <math>a_{2007}+a_{2008}=3</math>, we get <math>\frac{1}{x}+\frac{1}{y}=3</math>. | ||
+ | |||
+ | Therefore, <math>\frac{x+y}{xy}=3</math> which gives <math>x+y=3xy=(3)(3)=9</math> | ||
+ | |||
+ | Then, <math>(x+y)^2=81</math> which gives <math>x^2+2xy+y^2=81</math> which gives <math>x^2+y^2=81-2xy=81-(2)(3)=75</math> | ||
+ | |||
+ | Finally, <math>x^3+y^3=(x+y)(x^2-xy+y^2)=(9)(75-3)=\boxed{648}</math> | ||
+ | |||
+ | ~Tomas Diaz. orders@tomasdiaz.com | ||
+ | |||
+ | {{alternate solutions}} |
Latest revision as of 17:06, 26 November 2023
Problem
A sequence of positive reals defined by , , and for all integers . Given that and , find .
Solution
And the sequence repeats every 6 steps.
Therefore,
Since, and , then , and
From , we get , thus
and from , we get .
Therefore, which gives
Then, which gives which gives
Finally,
~Tomas Diaz. orders@tomasdiaz.com
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.