Difference between revisions of "Mock AIME 6 2006-2007 Problems/Problem 10"
Line 10: | Line 10: | ||
<math>R=\begin{pmatrix} cos(90^\circ) & -sin(90^\circ)\\ sin(90^\circ) & cos(90^\circ) \end{pmatrix}=\begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix}</math> | <math>R=\begin{pmatrix} cos(90^\circ) & -sin(90^\circ)\\ sin(90^\circ) & cos(90^\circ) \end{pmatrix}=\begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix}</math> | ||
+ | |||
+ | Let <math>P_r</math> be the point of rotation. | ||
+ | |||
+ | <math>P_r=\begin{pmatrix} 2000-k \\ k \end{pmatrix}</math> | ||
+ | |||
+ | <math>P_{n+1}=R</math> | ||
~Tomas Diaz. orders@tomasdiaz.com | ~Tomas Diaz. orders@tomasdiaz.com |
Revision as of 14:03, 25 November 2023
Problem
Given a point in the coordinate plane, let be the rotation of around the point . Let be the point and for all integers . If has a -coordinate of , what is ?
Solution
Let be the rotational matrix for a point along the origin:
For
Let be the point of rotation.
~Tomas Diaz. orders@tomasdiaz.com