Difference between revisions of "2006 AMC 10B Problems/Problem 12"

(Solution)
(Solution)
Line 16: Line 16:
  
 
So <math> a+b = \frac{1}{2} + \frac{7}{4} = \boxed{\textbf{(E) }\frac{9}{4}}</math>.
 
So <math> a+b = \frac{1}{2} + \frac{7}{4} = \boxed{\textbf{(E) }\frac{9}{4}}</math>.
 +
 +
== Video Solution ==
 +
 +
https://www.youtube.com/watch?v=q1mxhiyciSk
  
 
== See Also ==
 
== See Also ==

Revision as of 23:55, 24 November 2023

Problem

The lines $x=\frac{1}{4}y+a$ and $y=\frac{1}{4}x+b$ intersect at the point $(1,2)$. What is $a+b$?

$\textbf{(A) } 0\qquad \textbf{(B) } \frac{3}{4}\qquad \textbf{(C) } 1\qquad \textbf{(D) } 2\qquad \textbf{(E) } \frac{9}{4}$

Solution

Since $(1,2)$ is a solution to both equations, plugging in $x=1$ and $y=2$ will give the values of $a$ and $b$.

$1 = \frac{1}{4} \cdot 2 + a$

$a = \frac{1}{2}$

$2 = \frac{1}{4} \cdot 1 + b$

$b = \frac{7}{4}$

So $a+b = \frac{1}{2} + \frac{7}{4} = \boxed{\textbf{(E) }\frac{9}{4}}$.

Video Solution

https://www.youtube.com/watch?v=q1mxhiyciSk

See Also

2006 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png