Difference between revisions of "2017 IMO Problems/Problem 2"

(Undo incomplete solution (only accounts for integers))
(Tag: Undo)
Line 1: Line 1:
 +
==Problem==
 +
 
Let <math>\mathbb{R}</math> be the set of real numbers , determine all functions  
 
Let <math>\mathbb{R}</math> be the set of real numbers , determine all functions  
<math>f:\mathbb{R}\rightarrow\mathbb{R}</math> such that for any real numbers <math>x</math> and <math>y</math> <math>{f(f(x)f(y)) + f(x+y)}</math> =<math>f(xy)</math>
+
<math>f:\mathbb{R}\rightarrow\mathbb{R}</math> such that for any real numbers <math>x</math> and <math>y</math>
 +
 
 +
<math></math>{f(f(x)f(y)) + f(x+y)}<math> =</math>f(xy)<math></math>
 +
 
 +
==Solution==
 +
{{solution}}
 +
 
 +
==See Also==
 +
 
 +
{{IMO box|year=2017|num-b=1|num-a=3}}

Revision as of 00:39, 19 November 2023

Problem

Let $\mathbb{R}$ be the set of real numbers , determine all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that for any real numbers $x$ and $y$

$$ (Error compiling LaTeX. Unknown error_msg){f(f(x)f(y)) + f(x+y)}$=$f(xy)$$ (Error compiling LaTeX. Unknown error_msg)

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

2017 IMO (Problems) • Resources
Preceded by
Problem 1
1 2 3 4 5 6 Followed by
Problem 3
All IMO Problems and Solutions