Difference between revisions of "1999 IMO Problems/Problem 6"

(Problem)
(Problem)
Line 3: Line 3:
 
Determine all functions <math>f:\Bbb{R}\to \Bbb{R}</math> such that
 
Determine all functions <math>f:\Bbb{R}\to \Bbb{R}</math> such that
  
<cmath>f(x-f(y))-f(f(y))+xf(y)+f(x)-1</cmath>
+
<cmath>f(x-f(y))=f(f(y))+xf(y)+f(x)-1</cmath>
  
 
for all real numbers <math>x,y</math>.
 
for all real numbers <math>x,y</math>.

Revision as of 23:02, 18 November 2023

Problem

Determine all functions $f:\Bbb{R}\to \Bbb{R}$ such that

\[f(x-f(y))=f(f(y))+xf(y)+f(x)-1\]

for all real numbers $x,y$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

1999 IMO (Problems) • Resources
Preceded by
Problem 5
1 2 3 4 5 6 Followed by
Last Question
All IMO Problems and Solutions