Difference between revisions of "2023 AMC 12B Problems/Problem 23"

(insert question)
(Problem)
Line 2: Line 2:
 
When <math>n</math> standard six-sided dice are rolled, the product of the numbers rolled can be any of <math>936</math> possible values. What is <math>n</math>?
 
When <math>n</math> standard six-sided dice are rolled, the product of the numbers rolled can be any of <math>936</math> possible values. What is <math>n</math>?
  
<math>\textbf{(A)}~6\qquad\textbf{(B)}~8\qquad\textbf{(C)}~9\qquad\textbf{(D)}~10\qquad\textbf{(E)}~11</math>
+
<math>\textbf{(A)}~11\qquad\textbf{(B)}~6\qquad\textbf{(C)}~8\qquad\textbf{(D)}~10\qquad\textbf{(E)}~9</math>
  
 
==Solution==
 
==Solution==

Revision as of 21:49, 15 November 2023

Problem

When $n$ standard six-sided dice are rolled, the product of the numbers rolled can be any of $936$ possible values. What is $n$?

$\textbf{(A)}~11\qquad\textbf{(B)}~6\qquad\textbf{(C)}~8\qquad\textbf{(D)}~10\qquad\textbf{(E)}~9$

Solution

The product can be written as \begin{align*} 2^a 3^b 4^c 5^d 6^e & = 2^{a + 2c + e} 3^{b + e} 5^d . \end{align*}

Therefore, we need to find the number of ordered tuples $\left( a + 2c + e, b+e, d \right)$ where $a$, $b$, $c$, $d$, $e$ are non-negative integers satisfying $a+b+c+d+e \leq n$. We denote this number as $f(n)$.

Denote by $g \left( k \right)$ the number of ordered tuples $\left( a + 2c + e, b+e \right)$ where $\left( a, b, c, e \right) \in \Delta_k$ with $\Delta_k \triangleq \left\{ (a,b,c,e) \in \Bbb Z_+^4: a+b+c+e \leq k \right\}$.

Thus, \begin{align*} f \left( n \right) & = \sum_{d = 0}^n g \left( n - d \right) \\ & = \sum_{k = 0}^n g \left( k \right)  . \end{align*}

Next, we compute $g \left( k \right)$.

Denote $i = b + e$. Thus, for each given $i$, the range of $a + 2c + e$ is from 0 to $2 k - i$. Thus, the number of $\left( a + 2c + e, b + e \right)$ is \begin{align*} g \left( k \right) & = \sum_{i=0}^k \left( 2 k - i + 1 \right) \\ & = \frac{1}{2} \left( k + 1 \right) \left( 3 k + 2 \right) . \end{align*}

Therefore, \begin{align*} f \left( n \right) & = \sum_{k = 0}^n g \left( k \right)  \\ & = \sum_{k=0}^n \frac{1}{2} \left( k + 1 \right) \left( 3 k + 2 \right) \\ & = \frac{3}{2} \sum_{k=0}^n \left( k + 1 \right)^2 - \frac{1}{2} \sum_{k=0}^n \left( k + 1 \right) \\ & = \frac{3}{2} \cdot \frac{1}{6} \left( n+1 \right) \left( n+2 \right) \left( 2n + 3 \right) - \frac{1}{2} \cdot \frac{1}{2} \left( n + 1 \right) \left( n + 2 \right) \\ & = \frac{1}{2} \left( n + 1 \right)^2 \left( n + 2 \right) . \end{align*}

By solving $f \left( n \right) = 936$, we get $n = \boxed{\textbf{(A) 11}}$.

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

See Also

2023 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png