Difference between revisions of "2023 AMC 12B Problems/Problem 8"
(Created blank page) |
|||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | How many nonempty subsets B of <math>{0, 1, 2, 3, \cdots, 12}</math> have the property that the number of elements in B is equal to the least element of B? For example, B = <math>{4, 6, 8, 11}</math> satisfies the condition. | ||
+ | <math>\textbf{(A) } 256 \qquad\textbf{(B) } 136 \qquad\textbf{(C) } 108 \qquad\textbf{(D) } 144 \qquad\textbf{(E) } 156</math> | ||
+ | |||
+ | ==Solution 1== | ||
+ | There is no way to have a set with 0. If a set is to have its lowest element as 1, it must have only 1 element: 1. If a set is to have its lowest element as 2, it must have 2, and the other element will be chosen from the natural numbers between 3 and 12, inclusive. To calculate this, we do <math>\binom{10}{1}</math>. If the set is the have its lowest element as 3, the other 2 elements will be chosen from the natural numbers between 4 and 12, inclusive. To calculate this, we do <math>\binom{9}{2}</math>. We can see a pattern emerge, where the top is decreasing by 1 and the bottom is increasing by 1. In other words, we have to add <math>1 + \binom{10}{1} + \binom{9}{2} + \binom{8}{3} + \binom{7}{4} + \binom{6}{5}</math>. This is <math>1+10+36+56+35+6 = \boxed{144}</math>. | ||
+ | |||
+ | ~lprado |
Revision as of 17:16, 15 November 2023
Problem
How many nonempty subsets B of have the property that the number of elements in B is equal to the least element of B? For example, B = satisfies the condition.
Solution 1
There is no way to have a set with 0. If a set is to have its lowest element as 1, it must have only 1 element: 1. If a set is to have its lowest element as 2, it must have 2, and the other element will be chosen from the natural numbers between 3 and 12, inclusive. To calculate this, we do . If the set is the have its lowest element as 3, the other 2 elements will be chosen from the natural numbers between 4 and 12, inclusive. To calculate this, we do . We can see a pattern emerge, where the top is decreasing by 1 and the bottom is increasing by 1. In other words, we have to add . This is .
~lprado