Difference between revisions of "2006 AIME I Problems/Problem 9"

m (rv)
(solution cleanup)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
The sequence <math> a_1, a_2, \ldots </math> is geometric with <math> a_1=a </math> and common ratio <math> r, </math> where <math> a </math> and <math> r </math> are positive integers. Given that <math> \log_8 a_1+\log_8 a_2+\cdots+\log_8 a_{12} = 2006, </math> find the number of possible ordered pairs <math> (a,r). </math>
+
The [[sequence]] <math> a_1, a_2, \ldots </math> is [[geometric sequence|geometric]] with <math> a_1=a </math> and common [[ratio]] <math> r, </math> where <math> a </math> and <math> r </math> are positive integers. Given that <math> \log_8 a_1+\log_8 a_2+\cdots+\log_8 a_{12} = 2006, </math> find the number of possible ordered pairs <math> (a,r). </math>
  
 
== Solution ==
 
== Solution ==
<math>\log_8 a_1+\log_8 a_2+\ldots+\log_8 a_{12}= \log_8 a+\log_8 (ar)+\ldots+\log_8 (ar^{11}) = </math>
+
<cmath>\log_8 a_1+\log_8 a_2+\ldots+\log_8 a_{12}= \log_8 a+\log_8 (ar)+\ldots+\log_8 (ar^{11}) \\
 +
= \log_8(a\cdot ar\cdot ar^2\cdot \cdots \cdot ar^{11}) = \log_8  (a^{12}r^{66}) </cmath>
  
<math> = \log_8(a\cdot ar\cdot ar^2\cdot \cdots \cdot ar^{11}) = \log_8  (a^{12}r^{66}) </math>
+
So our question is equivalent to solving <math>\log_8 (a^{12}r^{66})=2006</math> for <math>a, r</math> [[positive integer]]s. <math>a^{12}r^{66}=8^{2006} = (2^3)^{2006} = (2^6)^{1003}</math> so <math>a^{2}r^{11}=2^{1003}</math>.
 
 
So our question is equivalent to solving <math>\log_8 (a^{12}r^{66})=2006</math> for <math>a, r</math> [[positive integer]]s.
 
 
 
<math>a^{12}r^{66}=8^{2006} = (2^3)^{2006} = (2^6)^{1003}</math> so
 
 
 
<math>a^{2}r^{11}=2^{1003}</math>
 
  
 
The product of <math>a^2</math> and <math>r^{11}</math> is a power of 2.  Since both numbers have to be integers, this means that <math>a</math> and <math>r</math> are themselves powers of 2.  Now, let <math>a=2^x</math> and <math>r=2^y</math>:
 
The product of <math>a^2</math> and <math>r^{11}</math> is a power of 2.  Since both numbers have to be integers, this means that <math>a</math> and <math>r</math> are themselves powers of 2.  Now, let <math>a=2^x</math> and <math>r=2^y</math>:
  
<math>(2^x)^2\cdot(2^y)^{11}=2^{1003}</math>
+
<cmath>\begin{eqnarray*}(2^x)^2\cdot(2^y)^{11}&=&2^{1003}\\
 
+
2^{2x}\cdot 2^{11y}&=&2^{1003}\\
<math>2^{2x}\cdot 2^{11y}=2^{1003}</math>
+
2x+11y&=&1003\\
 
+
y&=&\frac{1003-2x}{11} \end{eqnarray*}</cmath>
<math>2^{2x+11y}=2^{1003}</math>
 
 
 
<math>2x+11y=1003</math>
 
  
<math>11y=1003-2x</math>
+
For <math>y</math> to be an integer, the [[numerator]] must be [[divisible]] by <math>11</math>.  This occurs when <math>x=1</math> because <math>1001=91*11</math>. Because only [[even integer]]s are being subtracted from <math>1003</math>, the numerator never equals an even [[multiple]] of <math>11</math>. Therefore, the numerator takes on the value of every [[odd integer | odd]] multiple of <math>11</math> from <math>11</math> to <math>1001</math>.  Since the odd multiples are separated by a distance of <math>22</math>, the number of ordered pairs that work is <math>1 + \frac{1001-11}{22}=1 + \frac{990}{22}=46</math>.  (We must add 1 because both endpoints are being included.) So the answer is <math>\boxed{046}</math>.
 
 
<math>y=\frac{1003-2x}{11}</math>
 
 
 
For <math>y</math> to be an integer, the [[numerator]] must be [[divisible]] by 11.  This occurs when <math>x=1</math> because <math>1001=91*11</math>. Because only [[even integer]]s are being subtracted from 1003, the numerator never equals an even [[multiple]] of 11. Therefore, the numerator takes on the value of every [[odd integer | odd]] multiple of 11 from 11 to 1001.  Since the odd multiples are separated by a distance of 22, the number of ordered pairs that work is <math>1 + \frac{1001-11}{22}=1 + \frac{990}{22}=46</math>.  (We must add 1 because both endpoints are being included.) So the answer is <math>46</math>.
 
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2006|n=I|num-b=8|num-a=10}}
 
{{AIME box|year=2006|n=I|num-b=8|num-a=10}}
 
[[Category:Intermediate Geometry Problems]]
 
[[Category:Intermediate Trigonometry Problems]]
 
  
 
[[Category:Intermediate Algebra Problems]]
 
[[Category:Intermediate Algebra Problems]]
 
 
[[Category:Intermediate Number Theory Problems]]
 
[[Category:Intermediate Number Theory Problems]]

Revision as of 17:52, 28 November 2007

Problem

The sequence $a_1, a_2, \ldots$ is geometric with $a_1=a$ and common ratio $r,$ where $a$ and $r$ are positive integers. Given that $\log_8 a_1+\log_8 a_2+\cdots+\log_8 a_{12} = 2006,$ find the number of possible ordered pairs $(a,r).$

Solution

\[\log_8 a_1+\log_8 a_2+\ldots+\log_8 a_{12}= \log_8 a+\log_8 (ar)+\ldots+\log_8 (ar^{11}) \\ = \log_8(a\cdot ar\cdot ar^2\cdot \cdots \cdot ar^{11}) = \log_8  (a^{12}r^{66})\]

So our question is equivalent to solving $\log_8 (a^{12}r^{66})=2006$ for $a, r$ positive integers. $a^{12}r^{66}=8^{2006} = (2^3)^{2006} = (2^6)^{1003}$ so $a^{2}r^{11}=2^{1003}$.

The product of $a^2$ and $r^{11}$ is a power of 2. Since both numbers have to be integers, this means that $a$ and $r$ are themselves powers of 2. Now, let $a=2^x$ and $r=2^y$:

\begin{eqnarray*}(2^x)^2\cdot(2^y)^{11}&=&2^{1003}\\ 2^{2x}\cdot 2^{11y}&=&2^{1003}\\ 2x+11y&=&1003\\ y&=&\frac{1003-2x}{11} \end{eqnarray*}

For $y$ to be an integer, the numerator must be divisible by $11$. This occurs when $x=1$ because $1001=91*11$. Because only even integers are being subtracted from $1003$, the numerator never equals an even multiple of $11$. Therefore, the numerator takes on the value of every odd multiple of $11$ from $11$ to $1001$. Since the odd multiples are separated by a distance of $22$, the number of ordered pairs that work is $1 + \frac{1001-11}{22}=1 + \frac{990}{22}=46$. (We must add 1 because both endpoints are being included.) So the answer is $\boxed{046}$.

See also

2006 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions