Difference between revisions of "Group"
Mathkid1223 (talk | contribs) m |
Mathkid1223 (talk | contribs) |
||
Line 7: | Line 7: | ||
(Equivalently, a group is a [[monoid]] with inverses.) | (Equivalently, a group is a [[monoid]] with inverses.) | ||
− | Note that the group operation need not be [[commutative]]. If the group operation is commutative, we call the group an [[abelian group]] (after the Norwegian mathematician Niels Henrik Abel). | + | Note that the group operation need not be [[commutative]]. If the group operation is commutative, we call the group an [[abelian group]] (after the Norwegian mathematician Niels Henrik Abel). Also, the group operation may be additative, with <math>+</math> being used to display the operation. |
Groups frequently arise as [[permutation]]s or symmetries of collections of objects. For example, the rigid motions of <math>\mathbb{R}^2</math> that fix a certain regular <math>n</math>-gon is a group, called the [[dihedral group]] and denoted in some texts <math>D_{2n}</math> (since it has <math>2n</math> elements) and in others <math>D_n</math> (since it preserves a regular <math>n</math>-gon). Another example of a group is the [[symmetric group]] <math>S_n</math> of all permutations of <math>\{1,2,\ldots,n\}</math>. | Groups frequently arise as [[permutation]]s or symmetries of collections of objects. For example, the rigid motions of <math>\mathbb{R}^2</math> that fix a certain regular <math>n</math>-gon is a group, called the [[dihedral group]] and denoted in some texts <math>D_{2n}</math> (since it has <math>2n</math> elements) and in others <math>D_n</math> (since it preserves a regular <math>n</math>-gon). Another example of a group is the [[symmetric group]] <math>S_n</math> of all permutations of <math>\{1,2,\ldots,n\}</math>. |
Revision as of 10:30, 12 November 2023
A group is a set of elements together with an operation (the dot is frequently suppressed, so is written instead of ) satisfying the following conditions, known as the group axioms:
- For all , (associativity).
- There exists an element so that for all , (identity).
- For any , there exists so that ( inverses).
(Equivalently, a group is a monoid with inverses.)
Note that the group operation need not be commutative. If the group operation is commutative, we call the group an abelian group (after the Norwegian mathematician Niels Henrik Abel). Also, the group operation may be additative, with being used to display the operation.
Groups frequently arise as permutations or symmetries of collections of objects. For example, the rigid motions of that fix a certain regular -gon is a group, called the dihedral group and denoted in some texts (since it has elements) and in others (since it preserves a regular -gon). Another example of a group is the symmetric group of all permutations of .
See Also
This article is a stub. Help us out by expanding it.