Difference between revisions of "2023 AMC 10A Problems/Problem 25"

(Redirected page to 2023 AMC 12A Problems/Problem 21)
(Tag: New redirect)
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
==Problem==
+
#redirect[[2023 AMC 12A Problems/Problem 21]]
If A and B are vertices of a polyhedron, define the distance d(A, B) to be the minimum number of edges of the polyhedron one must traverse in order to connect A and B. For example, <math>\overline{AB}</math> is an edge of the polyhedron, then d(A, B) = 1, but if <math>\overline{AC}</math> and <math>\overline{CB}</math> are edges and <math>\overline{AB}</math> is not an edge, then d(A, B) = 2. Let Q, R, and S be randomly chosen distinct vertices of a regular icosahedron (regular polyhedron made up of 20 equilateral triangles). What is the probability that <math>d(Q, R) > d(R, S)</math>?
 
 
 
<math>\textbf{(A) }\frac{7}{22}\qquad\textbf{(B) }\frac{1}{3}\qquad\textbf{(C) }\frac{3}{8}\qquad\textbf{(D) }\frac{5}{12}\qquad\textbf{(E) }\frac{1}{2}</math>
 
 
 
 
 
 
 
== Video Solution 1 by OmegaLearn ==
 
https://youtu.be/Wc6PFNq5PAM
 
 
 
== Solution 1 ==
 
We can imagine the icosahedron as having 3 layers. 1 vertex at the top, 5 vertices below connected to the top vertex, 5 vertices below that which are 2 edges away from the top vertex, and one vertex at the bottom that is 3 edges away. WLOG because the icosahedron is symmetric around all vertices, we can say that R is the vertex at the top. So now, we just need to find the probability that S is on a layer closer to the top than Q. We can do casework on the layer S is on to get
 
<cmath>\frac{5}{11} \cdot \frac{6}{10} + \frac{5}{11} \cdot \frac{1}{10} = \frac{35}{110} = \frac{7}{22}</cmath>
 
So the answer is <math>\boxed{\textbf{(A) }\frac{7}{22}}</math>. -awesomeparrot
 
 
 
== Solution 2 ==
 
We can actually see that the probability that <math>d(Q, R) > d(R, S)</math> is the exact same as <math>d(Q, R) < d(R, S)</math> because <math>d(Q, R)</math> and <math>d(R, S)</math> have no difference. (In other words, we can just swap Q and S, meaning that can be called the same.) Therefore, we want to find the probability that <math>d(Q, R) = d(R, S)</math>.
 
 
 
WLOG, we can rotate the icosahedron so that R is the top of the icosahedron. Then we can divide this into 2 cases:
 
 
 
1. They are on the second layer
 
 
 
There are 5 ways to put one point, and 4 ways to put the other point such that <math>d(Q, R) = d(R, S) = 1</math>. <math>5 \cdot 4 = 20</math> ways to put them on the second layer.
 
 
 
2. They are on the third layer
 
 
 
There are 5 ways to put one point, and 4 ways to put the other point such that <math>d(Q, R) = d(R, S) = 2</math>. <math>5 \cdot 4 = 20</math> ways to put them on the third layer.
 
 
 
The total number of ways to choose P and S are <math>11 \cdot 10 = 110</math> (because there are 12 vertices), so the probability that <math>d(Q, R) = d(R, S)</math> is <math>\frac{20+20}{110} = \frac{4}{11}</math>.
 
 
 
Therefore, the probability that <math>d(Q, R) > d(R, S)</math> is <math>\frac{1 - \frac{4}{11}}{2} = \boxed{\textbf{(A) }\frac{7}{22}}</math>
 
 
 
~Ethanzhang1001
 
 
 
==Solution 3==
 
 
 
We know that there are <math>20</math> faces. Each of those faces has <math>3</math> borders (since each is a triangle), and each edge is used as a border twice (for each face on either side). Thus, there are <math>\dfrac{20\cdot3}2=30</math> edges.
 
 
 
By Euler's formula, which states that <math>v-e+f=2</math> for all convex polyhedra, we know that there are <math>2-f+e=12</math> vertices.
 
 
 
The answer can be counted by first counting the number of possible paths that will yield <math>d(Q, R) > d(R, S)</math> and dividing it by <math>12\cdot11\cdot10</math> (or <math>\dbinom{12}3</math>, depending on the approach). In either case, one will end up dividing by <math>11</math> somewhere in the denominator. We can then hope that there will be no factor of <math>11</math> in the numerator (which would cancel the <math>11</math> in the denominator out), and answer the only option that has an <math>11</math> in the denominator: <math>\boxed{\textbf{(A) }\frac{7}{22}}</math>.
 
 
 
~Technodoggo
 
 
 
==See Also==
 
{{AMC10 box|year=2023|ab=A|num-b=24|after=Last Problem}}
 
{{AMC12 box|year=2023|ab=A|num-b=20|num-a=22}}
 
{{MAA Notice}}
 

Latest revision as of 23:07, 9 November 2023