Difference between revisions of "2023 AMC 10A Problems/Problem 5"

m (Solution 1)
(Tag: Redirect target changed)
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
==Problem==
+
#redirect[[2023 AMC 12A Problems/Problem 4]]
How many digits are in the base-ten representation of <math>8^5 \cdot 5^{10} \cdot 15^5</math>?
 
 
 
<cmath>\textbf{(A)}~14\qquad\textbf{(B)}~15\qquad\textbf{(C)}~16\qquad\textbf{(D)}~17\qquad\textbf{(E)}~18\qquad</cmath>
 
 
 
==Solution 1==
 
Prime factorization of this gives us <math>2^{15}\cdot3^{5}\cdot5^{15}</math> Pairing <math>2^{15}</math> and <math>5^{15}</math> gives us a number with <math>15</math> zeros, giving us 15 digits. <math>3^5=243</math> and this adds an extra 3 digits. <math>15+3=\text{\boxed{(E)18}}</math>
 
 
 
~zhenghua
 
 
 
==See Also==
 
{{AMC12 box|year=2023|ab=A|num-b=3|num-a=5}}
 
{{AMC10 box|year=2023|ab=A|num-b=4|num-a=6}}
 
{{MAA Notice}}
 

Latest revision as of 22:15, 9 November 2023