Difference between revisions of "2023 AMC 10A Problems/Problem 16"
(→Solution 1 (3 min solve): You forgot the dollar signs) |
(Added See Also) |
||
Line 12: | Line 12: | ||
== Video Solution 1 by OmegaLearn == | == Video Solution 1 by OmegaLearn == | ||
https://youtu.be/BXgQIV2WbOA | https://youtu.be/BXgQIV2WbOA | ||
+ | |||
+ | ==See Also== | ||
+ | {{AMC10 box|year=2023|ab=A|num-b=15|num-a=17}} | ||
+ | {{MAA Notice}} |
Revision as of 20:30, 9 November 2023
Problem
In a table tennis tournament every participant played every other participant exactly once. Although there were twice as many right-handed players as left-handed players, the number of games won by left-handed players was more than the number of games won by right-handed players. (There were no ties and no ambidextrous players.) What is the total number of games played?
Solution 1 (3 min solve)
We know that the total amount of games must be the sum of games won by left and right handed players. Then, we can write , and since , . Given that and are both integers, also must be an integer. From here we can see that must be divisible by 12, leaving only answers B and D. Now we know the formula for how many games are played in this tournament is , the sum of the first triangular numbers. Now setting 36 and 48 equal to the equation will show that two consecutive numbers must equal 72 or 96. Clearly , so the answer is .
~~ Antifreeze5420
Video Solution 1 by OmegaLearn
See Also
2023 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 15 |
Followed by Problem 17 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.